Test Booklet No.	

This booklet consists of 150 questions and pages.

RGUPET/2025/1004/112

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN STATISTICS

Full Marks	ill Marks: 150								Time: 3 Hou	r		
Roll No.												
Day and Da	ate of E	xamir	nation:									
Signature o	f Invigi	lator((s)							 		
Signature o	f Candi	date _										
General Ins	struction	ns:										

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	The "Mission Sudarshan Chakra", recently launched by the Prime Minister of India, primarily relates to						
	a) a national renewable energy mission	b) a national digital currency mission	c) development of a multilayered air and missile defence system	d) a national mission to modernise Indian Railways	(c)		
2	"Pushpak"- a national Bombay is related to t		ented by the Indian Inst	itute of Technology,	Drone technolo gy		
	a) Helicopters b) Dairy technology c) Drone technology d) Artificial intelligence						
3	North East India's first connect	t underwater tunnel pr	oject, announced in 202	24, is proposed to	Numaliga rh and Gohpur		
	a) Dibrugarh and Dhemaji	b) Jorhat and Majuli	c) Numaligarh and Gohpur	d) Guwahati and North Guwahati	c)		
4	 Which of the following statements are correct? A. Canada hosted the 51st G7 summit in 2025. B. Four players were honoured with the Khel Ratna Award 2025. C. Sweden was ranked first in Global Innovation Index 2024. D. Operation Sindoor was Launched by India to attack terrorist bases in Pakistan on 7th May 2025. 						
	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D		
5	B. Shri C P RadhaC. India's rank inD. India has become	been appointed as the akrishnan has been appointed the Human Developm ome the 2 nd largest road	new CEO of Intel in Ma pointed as the Vice Pres ent Index 2025 released d network in the World	ident of India d by UNDP is 99	(d)		
	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only		
6	Which of the following sentences is false? A. Palk Strait joins India and Sri Lanka B. The Radcliffe Line is between India and Bangladesh C. The MacMohan Line separates India and China D. The Durand Line is between Iran and Afghanistan.						
	a) A, B	b) B, C	c) C, D	d) B, D	(d)		
7			l moon and new moon or rth in an elliptical orbit.	-	A and R are true but R doesnot explain A		

	a) A and R are true	b) A and R a	re true	c) A is true R is false	d) R is true but A is	(b)		
	and R correctly	but R does n		,	false	, ,		
	explains A.	explain A.						
8	Right to equality is a-					Fundame		
						ntal right		
	a) fundamental right			c) cultural right	d) legal right	(a)		
9	The author of the boo	k "Midnight's	Children'	" is-		Salman		
		T		T	T	Rushdie		
	a) Shakespeare	b) Leo Tolost	•	c) Salman Rushdie	d) R K Narayan	(c)		
1	Match the organization	ons with their i	headquar	ters:				
0	A LINIECCO		1 Nove	V a vla				
	A. UNESCO		1. New 2. Paris	YORK				
	B. WHO C. UNICEF		3. Gene					
	D. IMF			va iington D.C.				
		h) Λ_2 R_3		c) A-2, B-4, C-3, D-	d) A-1, B-3, C-2, D-	(b)		
	1	4	C-1, D-	1	4	(6)		
1	He said, "Happy new y	•			1 .	He		
1	The correct indirect sp		bove is-			wished		
						me a		
						happy		
						new year.		
	a) He said the new	b) He wished	d me a	c) He said to me	d) I was wished a	(b)		
	year was happy.	happy new y	ear.	that happy new	happy new year.			
				year.				
1	Identify the correct se		n the foll	owing.				
2	A. One of my friends is							
	B. I don't know nothin C. It is a two-hour jour	_						
	D. We will be definite		vesterda	v's programme				
	a) A, B	b) B, C	yesteraa	c) A, C	d) C, D	(c)		
	<i>~, ·, ·</i>	2, 2, 3			a, s, s	(5)		
1	"She drank the	milk that	was there	in the flask." The appr	opriate quantifier to	little		
3	fill in the blank is-							
	a) all	b) little		c) sour	d) few	(b)		
1	"a/ great /and/ reality	· · · ·	-	•		There is a		
4		-		with the above jumbled	I words/phrases is-	great		
	P. There is a great the	•	•			disparity		
	Q. There is a great dis		•			in their		
	R. Their great disparit			-		theory and		
	, , ,							
	a) D	h) O		a) D	۲/ c	reality.		
	a) P	b) Q		c) R	d) S	(b)		
1	The correct match of s	synonyms and	lantonyn	l Is is:		A-ii, B-iii,		
5	The correct mater or :	symonymis and	antonyn	13 13.		C-i, D-iv		
	A. Futile		i. Help			0.,510		
	B. Generic		ii. Effect	tive				
	C. Hinder		iii. Indiv					
	D. Inception		iv. Term					

	a) A-i, B-ii, C-iii, D-iv	b) A-iii, B-ii, C-iv, D- iii	c) A-iv, B-iii, C-i, D-ii	d) A-ii, B-iii, C-i, D-iv	(d)			
1	The total number of s	quares in the following	figure is:		22			
6								
	a) 24	b) 20	c) 22	d) 18	(c)			
1 7	Fill in the blank in the ELFY GLHX ILJW	- ·			KLLV			
	a) KLLV	b) KLMX	c) JLLV	d) JLMX	a)			
1 8	Raghav introduces Vir Raghav and Vineet are		the only brother of his f	father's wife. How	cousin			
	a) brother	b) cousin	c) uncle	d) son-in-law	(b)			
1 9	Which two numbers s correct?	_	to make the given equa	ation mathematically	6, 8			
	-) C O	$3 \times 6 + 72 \div$ b) 6, 24	-8 - 24 = 12	JV NI	1->			
	a) 6, 8	b) 6, 24	c) 3, 8	d) None	(a)			
2	If BANKER is coded as	CAOKFR, then how wo	uld LAWYER be coded?	I	MAXYFR			
	a) LBWZES	b) LBWYFR	c) MAXYFR	d) MAXZES	c)			
2		hinking through the so	measurement, and such urces of problems and r	-				
	a) Random errors	b) Systematic errors	c) Cascading errors	d) Perpetual errors	b			
2	the world that can be	true or false, and who	pothesis. A hypothesis i se truth is being tested.					
	a) A valid hypothesis is based on 'that exists'	b) A hypothesis is a positive conclusion	c) A hypothesis can never be tested	d) A valid hypothesis must be falsifiable	d			
2	hypotheses?		be considered as valid		Answer			
	A. Eating two ounces of olive oil a day decreases the odds of contracting heart disease.B. What is the best fertilizer to use to get large and tasty tomatoes?C. Macs are better than PCs.D. Briar's Aspirin cures headaches faster than RCS Aspirin.							
	a) A, B	b) A, B, C	c) A, D	d) B, C	С			
2 4	Relate the 'function o answer	r relationship' (A) and '	comment' (B) and selec	t the appropriate	Answer			
	A: Find how the speed	d of sound in air at fixed	d pressure depends upo	on air temperature.				

	B: The control va	riable is t	temperatu	re, and th	ne response variable is	sound speed.		
	a) Functional		Functiona		c) Functional	d) Neither the	а	
	relationship is	rel	lationship i	is	relationship is	functional		
	correct and the		correct but		correct but the	relationship is		
	comment is true	for co	mment is t	rue for	comment is false for	correct nor the		
	the relationship	the	e relations	hip	the relationship	comment is true		
2	Relate 'sampling						Answer	
5	Sampling Design	1		Method				
	A. Deliberate			i. Sampl	e collected as			
				informa	tion received and surve	ey		
				progress	ses			
	B. Simple rando	m		ii. samp	le drawn from a			
				heterog	eneous group			
	C. Stratified			iii purpo	sive selection of			
				particula	ar units			
	D. Sequential			iv. very	item in the population			
	-			has an e	qual chance of inclusio	n		
	a) A-iii, B-iv, C-ii,	D-i b)	A-ii, B-iv, C		c) A-i, B-iii, C-ii, D-iv	d) A-iii, B-ii, C-iv, D-i	а	
2					tion is 1000. How many	-	Answer	
6	there between μ -				•			
	a) 500	b)	680		c) 720	d) 950	b	
2	Which of the follo	owing ar	e reasons f	for citing	a paper?		Answer	
7								
	A. use its ideas, d	efinition	s, terms in	a Resear	ch			
	B. provides upcor	ming fact	ts regardin	g underg	oing Research Questior	١.		
	C. to adopt part/f	full meth	odology it	adopted	for a certain task.			
	D. to refer to data also used in Current Research.							
	a) A, B, C	b)	B, C, D		c) A, C, D	d) A, B, D	С	
2	Scholars who wis	h to mee	et publicati	on expec	tations mostly resort to	a variety of	Answer	
8	techniques to inc	rease the	eir output	and cran	k up their citation ranki	ng, which are not		
	considered ethica	al. Identi	fy these te	chniques	:			
	A. Gift authorship							
	B. Extensive expe	riments						
	C. Salami Slicing							
	D. Extensive refe				T .	Γ		
	a)A, B, C		A, B, D		c) B, C, D	d) A, C, D	d	
2	Match the refere	nces (AP	A 7 style):				Answer	
9			1					
	A. Journal			-	M., Siegelman, N.,			
	Article	_			M., Rueckl, J. G., &			
		•			acking the unique			
			•		r variability and word			
					nining word- and child-			
	level predictors of performance. Journal of							
	Educational Psychology, 114(6), 1242–1256. https://doi.org/10.1037/edu0000696							
		nttps://	aoi.org/10	.103//ed	<u>uuuuub96</u>			
	B. Authored ii. Levenson, H., Jinich, S., Vaz, A., & Rousmaniere, T. Book (2025). <i>Deliberate practice in emotionally focused</i>							
	Book			•	• •	_		
		-			sychological Associatio	11.		
		nttps://	uoi.01g/10	.103//00	<u>00436-000</u>			
1								

	6 14/ /	1 1	T 1 0 D 1 1 1 1 2	000)	1					
	C. Webpage	_	es, T. L., & Drozda, N. (2							
			ation to promote mind–	-						
		health. In C. Maykel & M. A. Bray (Eds.), <i>Promoting</i>								
		mind-body health in schools: Interventions for								
		mental health profession								
		Psychological Association								
		https://doi.org/10.103								
		11ttp3.// doi.org/ 10.103	7/0000137 002							
	D. Edited	iv Taras 7 /2024 May	30). Situational irony co	an ha						
			•							
	Book Chapter		rrifying. howstuffworks							
		-	howstuffworks.com/art	ts/lite						
		rature/situational-irony	<u>/.htm</u>							
	a) A-i, B-ii, C-iv, I	D-iii b) A-ii, B-iii, C-iv, I	D-i c) A-iii, B-ii, C-i, D-	iv d) A-i, B-ii, C-iii, D-iv	а					
3	Which one of th	e following refers to pos	itive skewness?							
0										
	a)	b)	c)	d)	С					
	^^		, , , , , , , , , , , , , , , , , , ,							
	/									
	/ \	(/ \								
				X Mean Median Mode						
	Mean = Median = Mode	Mean= Median=Mode	Mode Median Mean	n Mean Madian Mode						
3	How much is the	e degree of freedom for t	the following data table	?	Answer					
1	S. No.	X, Hypothesised med	$D_i = (X_i - \mu_{H_c})$	D_i^2						
		$m_{H_0} = 578 \text{ kg}.$. ,	·						
	5	572 578	-6	36						
	6	578 578	0	0						
	7	570 578	-8	64						
	8	572 578	- 6	36						
	9	596 578		324						
	10	544 578		1156						
	n = 10		$\sum D_i = -60 \qquad \qquad \sum D_i^2 = 18$	816						
	a) 8	b) 9	c) 10	d) 18	b					
2	•			u) 10						
3	Find out the Nui	I hypothesis for the giver			Answer					
2	S. No.	X_{i} Hypothesised mean	$D_i = \left(X_i - \mu_{H_0}\right) \qquad D$	ρ_i^2						
		$m_{H_0} = 578 \text{ kg}.$								
	5	572 578	-6 36	5						
	6	578 578	0	0						
	7	570 578	-8 64							
	8 9	572 578 596 578	-6 30							
	10	596 578 544 578	18 324 -34 1156							
	n=10	279	$\sum D_i = -60 \qquad \qquad \sum D_i^2 = 1816$							
	<u></u>		$\angle D_i = -00$ $\angle D_j = 1810$	<u> </u>						
	a) $\mu H_0 = 578$ kg.	b) μ <i>H</i> ₀ ≠ 578kg.	c) $\mu H_0 = -578$ kg.	d) $\mu H_0 = \pm 578$ kg.	а					
3	,, ,	n of the deviations of ob			Answer					
3										
	a) -∞	b) 0	c) +∞	d) undefined	b					
2			l () +⊶	u) unueillieu						
3 4	Derive from the	following diagram			Answer					
					1					

	Assertion: In this normal distribution 5 percent of the sample are rejected. Justification: It shows a two tailed hypothesis test model at 90 percent confidence level a) Assertion is true and justification but justification c) Assertion is true and justification is and justification for							
	and justification	-		and justification is true but does not	and justification for the Assertion is			
	explains the Assertion	explains the Assertion		explain the	incorrect			
	7.0001 (1011	733CI LIUI	•	Assertion	correct			
3	Match into pairs for th	ne Statistic	al method w	ith appropriate details	mentioned:	Answer		
5	Statistical method A. Correlation B. Polynomial regres		Details i. Order 2, 3 ii. More tha	3, 4, In two population on sa				
			characterist					
	C. ANOVA			omogeneity				
	D. Chi square	L\ A : D	•	only two variables	1) A B : C B :	I.		
3	a) A-i, B-ii, C-iii, D-iv Match the following a		-i, C-ii, D-iii e correct ans	c) A-iv, B-ii, C-i, D-iii wer:	d) A-iii, B-i, C-ii, D-iv	b Answer		
	A. Nature of Int B. Rate of Chen C. Increase the D. hydrocarbon	nical React rate of rea	ion action	i Kinetics ii Bond iii Lipid er iv catalyst				
	a) A(i), B(ii), C(iii), D(iv)	b) A(ii), B D(iii)	(i), C(iv),	c) A(iii), B(ii), C(i), D(iv)	d) A(ii), B(iii), C(i), D(iv)	(b)		
3 7	In a simple harmonic	motion, th	e velocity of	a particle is maximum a	<u></u>	Answer		
	a) Mean position	b) Extren	ne position	c) Halfway between mean and extreme	d) At all positions	(a)		
3 8	In a double-slit expeto the fringe spacing			e between slits is doul	bled, what happens	Answer		
	a) Fringe spacing halves				d)Fringe spacing quadruples	(a)		
3	A block slides down statements is true?	a friction	less incline	d plane. Which of the	following	Answer		
	a) Mechanical		ial energy	c) Kinetic energy	d)Acceleration is	(b)		
	energy is not	decrease		decreases	zero			
<u></u>	conserved	energy in	creases					

4 0	Which of the following is true for a photon in a vacuum?						
	a) It has mass but no energy	b) It has ene no rest mass		c) It has rest mass and energy	d) It can be accelerated by a force	(b)	
4	Which of the followin	l g is diamagne	tic?			Answer	
	a) CO ₂	b) O ₂		c) NO	d) O ₂ ⁻	(a)	
4 2	Match the following l	igands with th	eir dentic	ity:		Answer	
	A. NH ₃		i. Quadr	ridentate			
	B. EDTA		ii. Mond	odentate			
	C. Oxalate		+	dentate			
	D. Porphyrin		iv. Bider				
	a) A-ii, B-iii, C-iv, D-i	h) A ii B iii	C i D iv	c) A-iv, B-iii, C-ii, D-i.	d) A-ii, B-i, C-iv, D-iii	(a)	
4				netal-metal bonding p	-	<u> </u>	
3	in which of the follow	ing compound	us is the n	netai-metai bonding pi	resentr	Answer	
	a) NaCl	b) ZnO		c) Al ₂ O ₃	d) Cr₂Cl ₆	(d)	
4	A solution contains 0. osmotic pressure:	1 mol of a nor	n-volatile	solute in 1 L of water a	t 298 K. Calculate the	Answer	
	a) 2.44 atm	b) 1.33 atm		c) 0.22 atm d) 0.11 atm		(a)	
4 5	According to Henry's	L	oility of a g		,	Answer	
	a) Independent of	b) Directly	y c) Inversely		d) Exponential with	(b)	
	pressure.	proportiona	al to proportional to		pressure.		
4	Relate the statements	pressure.		pressure.			
6	A: Assertion–SSDs are		IDDc				
J				ory instead of spinning	disks.	Answer	
	a) Both A and B are	b) Both A an	id B are	c) A is true, but B is	d) A is false, but B is		
	true, and B is the	true, but B is	s NOT	false	true	(0)	
	correct explanation	the correct				(a)	
	of A	explanation	of A				
4	Match the pairs:	•		•	•		
7	·						
	A. Machine Learning i Enables machines to understand and process						
			human la				
	B. Natural Language ii Uses data to learn and improve predictions						
	Processing (NLP)		automat			Answer	
	C. Computer Vision	iii		and interprets visual da	ata like		
			-	nd videos	-		
	D. Expert Systems	iv		uman decision-making	using rules		
				vledge base	0		
	I L			0		1	

			1	1	1		
	a) A – iv, B – i, C – iii, D – ii.	b) A – iv, B – iii, C – i, D – ii.	c) A – ii, B – i, C – iii, D – iv.	d) A – iii, B – i, C – iv, D – ii.	(c)		
4		anguage is widely used			Answer		
8	Tringin programming i	anguage is macry asca	Tot 7th direction		71131161		
	a) Python	b) JavaScript	c) C#	d) HTML	(a)		
4 9	Which of the following	g statement is true:			Answer		
	a) A byte is made up of 16 bits.	b) ROM is volatile memory that loses data when power is switched off.	c) A compiler translates high-level code into machine code line by line.	d) A firewall is used to protect a computer network from unauthorized access.	(d)		
5 0	What is a network of	networks called?			Answer		
	a) Intranet	b) Internet	c) WAN	d) LAN	(b)		
5 1	Let X be a random var	iable with $P(X = x) =$	$k(x+1); x = 0, 1, 2 \delta$	$\frac{1}{2}$ 3. The value of k is	Answer		
	a) 1/10	b) ¼	c) 9	d) 1/6	a) 1/10		
5 2	Let $X \sim Uniform$ ($-a$	(a), determine 'a' such	that $P(X < 2) = 1/4$	4	Answer		
	a) 2	b) 4	c) 8	d) 6	c) 8		
5	The average marks of 100 students at a certain examination is 66 and the variance is 64. Assuming that the marks are normally distributed, the number of students getting marks between 50 and 82, is approximately						
	a) 68	b) 95	c) 90	d) 99	b) 95		
5	Assertion (A): Entropy	ng Assertion-Reason: of an isolated system a ct consequence of the s	•	ynamics.	Answer		
	a) Both A and R are true, and R explains A	b) Both A and R are true, but R does not explain A	c) A true, R false	d) A false, R true	(a)		
5 5	Match the types of a r distribution functions	random variable X with	the specific nature of it	s cumulative			
	Type of R.V.		Nature of cdf				
	A. Discrete		I. Absolutel	y continuous	(A-II), (B- I), (C-III)		
	B. Continuous		II. Increases	by jump only	1,, (6)		
	C. Partially disc	rete, partially	partially III. Increases by jump and continuously also				
	a) (A-I), (B-II), (C-III)	b) (A-II), (B-I), (C-III)	c) (A-II), (B-III), (C-I)	d) (A-III), (B-I), (C-II)	b)		
5 6	A continuous random	variable X has the distr	ibution function		Answer		

	F(x) = kx, 0 < x < 1 1, x > 1								
	The value of <i>k</i> is								
	a) 2	b) ½	c) 1	d) 1⁄4	c) 1				
5	Which of the following	g is/are not true?		l					
7	(i) All estima	tors are statistics							
	(ii) All statisti	cs are estimators			Answer				
	(iii) The terms	s estimators and estima	ates are synonyms						
	(iv) An estima	te is the true value of a	an estimator						
	a) (ii) only	b) (i), (ii)& (iii) only	c) (ii) & (iii) only	d) (i), (iii) & (iv) only	c) (ii) & (iii) only				
5 8	Let X and Y have joint (a, b) is	pdf <i>f(x, y)=2, 0<x<y<1< i=""></x<y<1<></i>	. Let <i>a=E(Y X=1/2)</i> and	<i>b=V(Y X=1/2)</i> . Then	Answer				
	a) (1/4, 7/12)	b) (3/4, 1/48)	c) (3/4, 7/12)	d) (1/4, 1/48)	b) (3/4, 1/48)				
5 9		nsistent estimator of ϑ . θ and $V(T_n) \to 0$ as $n \in \mathbb{R}$			Answer				
	a)	b)	c)	d)	a)				
	B implies A but A does not imply B	A implies B but B does not imply A	None of A and B implies the other	A and B implies each other	B implies A but A does not imply B				
6 0	The relation between	expected value of R an	d S.D. σ with usual con	stant factor is:	Answer				
	a) E(R)=D ₁ σ	b) E(R)=D ₂ σ	c) E(R)=d₂σ	d) E(R)=d ₁ σ	c) E(R)= $d_2\sigma$				
6	R-charts are preferabl	e over σ charts becaus	e:		Answer				
	a) R and SD fluctuate together in case of small samples	b) R-charts are economical	c) R is easily calculatable	d) all of the above	d) all of the above				
6 2	The causes of infant di.e. Endogenous death		being separated in two	broad groups'	Answer				

	a) Premature deaths.	b) Mature deaths		c) Neonatal deaths	d) Exogenous deaths.	d) Exogenou s deaths.		
6	Match the following s	uitable pa	irs					
3	A. x-bar chart		I. Perd	I. Percentage defective				
	B. p chart		II. vari	Answer				
	C. u-chart		III. Vari	able control chart				
	D. R chart		IV. Nun	nber of defects per sam	ple			
	a) A-II, B-I, C-IV, D-	B-I, C-IV, D- b) A-I, B-II, C-		c) A-III, B-II, C-I, D-IV	d) A-III, B-I, C-IV, D-II	d) A-III, B-I, C- IV, D- II		
6	The graph of the prop	ortion def	ectives in the	e lot against average sa	mple number is:	Answer		
	a) ASN curve	b) Powei	curve	c) OC Curve	d) All of the above	a) ASN curve		
6 5	Computation of standardized death rate is based upon the following assumptions. (i). The age wise distribution of two population is same. (ii). One population is taken as standard population.							
	a) option (i) is true	(i) is true b) options (i) are true		c) option (ii) is true	d) both options are false	b) options (i) and (ii) are true		
6	The probability of reje	ecting a lot	t having $ar{p}$ as	the process average de	fective is known as	Answer		
	a) Consumer's risk	b) Produ	cer's risk	c) Type I error	d) Type II error	b) Producer' s risk		
6 7	In hypothesis testing, which of the following pairs is correct? A. Type I error - False Positive; Type II error - False Negative B. Type I error - False Negative; Type II error - False Positive C. Type I error - Power of the test; Type II error - Confidence level D. Type I error - Confidence level; Type II error - Power of the test							
	a) only A is true	b) only B	is true	c) only A and C are true	d) only D is true	a) only A is true		
6 8	A more robust non-pa	rametric a	alternative to	the independent samp	lles t test is the:	Answer		

	a) matched pairs t test.	b) Kruskal-Wallis test	c) Wilcoxon rank- sum test.	d) Welch's t test.	c) Wilcoxon rank-sum test.			
6 9	A p-value is best desc	ribed as:			Answer			
9	a) Probability of H₀ being true	b) Probability of H ₁ being true	c) Probability of obtaining a result as extreme as the observed under H ₀	d) Probability of Type I error	c) Probabilit y of obtaining a result as extreme as the observed under Ho			
7	The likelihood ratio test statistic is generally given by:							
	a) f(X; θ ₀) / f(X; θ ₁)	b) f(X; θ ₁) / f(X; θ ₀)	c) (sup under H_1 of $L(\theta)$) / (sup under H_0 of $L(\theta)$)	d) (sup under H_0 of $L(\theta)$) / (sup under H_1 of $L(\theta)$)	d) (sup under H_0 of $L(\theta)$) / (sup under H_1 of $L(\theta)$)			
7	If $E[X Y] = E[X]$, what	can be said about X and	1 Y?		Answer			
	a) X and Y are dependent	b) X and Y are independent	c) X and Y are jointly uniform	d) None of these	b) X and Y are independ ent			
7	If λ is the likelihood ra	tio criterion, the asymp	ototic distribution of -21	log _e λ is	Answer			
	a) Beta of 2 nd kind	b) Chi-square	c) Beta of 1 st kind	d) Normal	b) Chi- square			
7	The Rao-Cramer lower bound for an unbiased estimator of σ^2 in a $N(\mu,\sigma^2)$ population when μ is known, is							
	a) $\frac{\sigma^4}{n}$	b) $\frac{2\sigma^4}{n}$	c) $\frac{\sigma^4}{2n}$	d) $\frac{2\sigma^4}{3n}$	b) $\frac{2\sigma^4}{n}$			
7			nethod algorithm for sol my allocations need to		Answer			
	a) n-1	b) n	c) 2n-1	d) n-2	a) n-1			

7	Choose th	ne correct sta	atements.				
5	А	. The type I	error is caused by reje	ection of H ₀ when it is tr	·ue		
	В	. The type I	I error is caused by acc	eptance of H ₀ when H ₁	is true	Answer	
	С	,,	•	n gives equal weights to		rs	
	a) A and E	3 are true	b) B and C are true	c) A and C are true	d) All the three	a) A and B are true	
7	3.3, 2.9, 5	5.11, 6.31, 6.	93, 7.3, 7.8, 8.03. It is e	to 1985 in Mn. Tones we expected that the media $I=5$, the value of T in W	an production of	Δnswer	
	a) 28		b) 26	c) 25	d) 27	b) 26	
7 7	· · · · · · · · · · · · · · · · · · ·						
	a) only A	is true	b) only B and D are true	c) only B, C and D are true	d) only C and D true	are d) only C and D are true	
7	Match the	e item of col	umn A with appropriat	e items of column B			
8		2. Poi 3. Exp (λ) 4. Va	$aX + b$] sson Distribution (λ) conential Distribution $r(aX + b)$	A. $exp(\lambda(e^{t} - B + a^{2}Var(X))$ C. $aE[X] + b$ D. $\lambda/(\lambda - t)$	$for \ t < \lambda$	Answer	
	a) 1-C, 2-l	B, 3-D, 4-A	b) 1-D, 2-C, 3-B, 4-A	c) 1-B, 2-C, 3-A, 4-D	d) 1-C, 2-A, 3-D	A d) 1-C, 2- A, 3-D, 4- A	
7 9	For a star	ndard norma	l random variable Z, the	e probability P(Z > 0) is:		Answer	
	a) 0		b) 0.5	c) 1	d) 0.6826	b) 0.5	
8	What is th	he formula to	o calculate Bayesian pro	obability?		Answer	

	a) P(B A) = (P(A B) * P(B)) / P(A)	b) P(A B) = (P(B) * P(A)) / P(B A)	c) P(A B) = (P(B A) * P(A)) / P(B)	d) P(B A) = (P(A) * P(B)) / P(A B)	c) P(A B) = (P(B A) * P(A)) / P(B)			
8	Let X and Y be two inc given X+Y is	dependent Poisson varia	ates. Then the condition	nal distribution of X	Answer			
	a) Geometric	b) Poisson	c) Negative binomial	d) Binomial	d) Binomial			
8	Which statement corr	ectly describes a time-l	nomogeneous Markov (chain?				
2	i. The proba	ability of future states of	lepends on the entire h	istory of past states.				
	ii. The trans	ition probabilities betw	een states remain cons	tant over time.	Answer			
	iii. It is a stoo	chastic process where a	Il states are recurrent.					
	iv. Its transition matrix rows do not necessarily sum to one.							
	a) option (i) is true	b) option (ii) is true	c) options (i) & (iv) are true	d) options (ii) & (iii) are true	b) option (ii) is true			
8	transition matrix P:							
		$P = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 8 & 0.2 \\ 3 & 0.7 \end{pmatrix}$		Answer			
	If the chain starts in st	tate A, what is the prob	ability of being in state	A after 2 steps?				
	a) 0.64	b) 0.70	c) 0.76	d) 0.80	c) 0.76			
8		me Markov chain descr ansition matrix P is give		h states 'Sunny' (S)				
		$P = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 6 & 0.4 \\ 2 & 0.8 \end{pmatrix}$		Answer			
	what is the stationary	distribution ($\pi = (\pi_S, \pi_S)$	(π_R))?					
	a) (0.5, 0.5)	b) (0.33, 0.67)	c) (0.4, 0.6)	d) (0.25, 0.75)	b) (0.33, 0.67)			
8 5		coming from a Binomial ion as $Beta(\alpha, \beta)$, the		meters (n,p) and p	Answer			
	a) $Beta(\alpha + \bar{x}, \beta + n - \bar{x})$	b) $Beta(\alpha + n, \beta + n)$	c) <i>N</i> (μ, σ ²)	d) $Gamma(\alpha + x, \beta + n - x)$	a) $Beta(\alpha + \bar{x}, \beta + n - \bar{x})$			
8		g statement(s) is(are) to		ompeting models.	Answer			

	B. Posterior predictive checks are used to evaluate model fit with new or replicated data.C. If the Bayes factor is less than 1, it always means the null hypothesis is correct.								
	a) only statements A & B are true	b) only statements & C are true	B c) statement A is true but B & C are false	d) statements A, B & C are true	a) only statemen ts A & B are true				
8	Gibbs sampling is a sp	ecial case of:	,	1	Answer				
	a) Importance sampling	b) Metropolis– Hastings	c) Markov chain Monte Carlo (MCMC)	d) Bootstrap	c) Markov chain Monte Carlo (MCMC)				
8	Match the following s	uitable pairs							
0	A. Squared-erro	or loss	i. Posterior r	node					
	B. Absolute-err	or loss	ii. Posterior r	nean	Answer				
	C. 0–1 loss		iii. Posterior r	median					
	D. MAP estimat	tor	iv. Maximum	a posteriori					
	a) A-ii, B-i, C-iii, D-iv	b) A-ii, B-iii, C-i, D-i	v c) A-i, B-ii, C-iii, D-iv	d) A-iii, B-ii, C-iv, D-i	b) A-ii, B- iii, C-i, D- iv				
8	The hazard function h	(t) can be written a	s:		Answer				
	a) $\frac{1-F(t)}{f(t)}$	$\mathfrak{b})\frac{f(t)}{1-F(t)}$	c) $\frac{dF(t)}{dt}$	d) F(t) - f(t)	b) $\frac{f(t)}{1-F(t)}$				
9	The exponential distri	bution is <i>memoryles</i>	ss. This means:		Answer				
	a) $f(t+s)$ = $f(t)f(s)$	b) $E[T T > t]$ = $t + E[T]$	c) $P(T > t + s T > t)$ $= P(T > s)$	d) Hazard function decreases over time	c) $P(T > t + $ $= P(T $ $> s)$				
9	A right-censored obse	rvation occurs wher	n:		Answer				
	a) Failure is observed exactly	b) Data are missing completely	c) The measurement is left-truncated	d) The lifetime is known to exceed a certain time but not the exact failure time	d) The lifetime is known to exceed a certain time but not the exact				

						failure time
9	The Kaplan–Meier est	imator provides a no	onparametric estimate of:	1		
	a) Hazard function	b) Survival function	c) Mean residual life	d) Shape parameter of Weibul		b) Survival function
9	Match the following s	uitable pairs	1	1		
3	A. Kaplan–Mei	er estimator	i. Hazard = b exp(covari			
	B. Nelson–Aale	B. Nelson–Aalen estimator ii. Nonparametric survival function estimate			Answer	
	C. Right-censor	C. Right-censoring iii. Cumulative hazard estimator				
	D. Proportional	hazards model	iv. Failure tim to exceed	ne known only a bound		
	a) A-ii, B-iii, C-iv, D-i	b) A-i, B-ii, C-iii, D-i	c) A-iii, B-ii, C-iv- D-i	d) A-iv, B-iii, C-		a) A-ii, B- iii, C-iv, D-i
9 4	memoryless p B. A Weibull dis distribution.	tial distribution is the property. tribution with shape) true/false ${\sf e}$ only continuous lifetime ${\sf parameter}\ k=1$ reduces ${\sf 1}$, the hazard rate decrease	s to an exponent		Answer
	a) only statements A & C are true	b) only statements & C are true	B c) only statements A & B are true	d) All statement are true		c) only statemen ts A & B are true
9	Which of the following	g statement(s) is(are) true/false			
)	A. Adding redun	dant components typ	pically decreases system r	eliability		
	B. For a parallel reliabilities	system, reliability eq	uals the minimum of indi	vidual componei	nt	Answer
	C. The Barlow–P reliability	roschan measure ass	sesses component import	ance to system		
	a) only statements A & C are true	b) only statements A & B are true	c) only statements A & B are false	d) All statement are false		c) only statemen ts A & B are false

9	Match the following s	uitable pairs					
6	A. Series system	n		i. Works if at le components			
	B. Parallel syste	em		ii. Improves ove reliability	erall system		Answer
	C. k-out-of-n sy	stem		iii. Product of co	omponent		
	D. Redundancy			iv. $1 - \prod (1 - R)$	i)		
	a) A-iii, B-iv, C-ii, D-i	b) A-ii, B-iii, C-iv,	D-i	c) A-iii, B-ii, C-iv, D-i	d) A-iii, B-iv, C-i	i, D-ii	d) A-iii, B- iv, C-i, D- ii
9	In the standard form o	of an LPP, all decis	ion v	ariables are:	l		Answer
	a) Non-negative b) Positive			c) Integer valued	d) Free of sign restrictions		a) Non- negative
9	The branch-and-bound technique is used to solve:						
	a) Standard LPPs b) Integer programming problems			c) Ttransportation problems	d) Queuing mo	dels	b) Integer program ming problems
9	The shortest-path algo	orithm commonly	used	in networks is:	I		Answer
	a) Ford–Fulkerson	b) Dijkstra's algorithm		c) Kruskal's algorithm	d) Hungarian algorithm		b) Dijkstra's algorithm
1 0 0	In an $M/M/1$ queue,	the utilization fact	tor ρ	is:			Answer
	a) $\lambda + \mu$	b) <i>μ</i> – λ		c) μ/λ	d) λ/μ		d) λ/μ
1 0 1	The matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	is					symmetri x matrix
	a) identity matrix	b) symmetrix ma	atrix	c) skew symmetrix matrix	d) null matrix		b)
1 0 2	List I: Matrix A. Hermitian matrix B. Skew-Hermitian matrix C. Unitary matrix List i. Ur ii. Di iii. R		Jnit m Diago Real Eithe	ither zero or pure imaginary			A-III, B- IV, C-I, D- II
	a) A-IV, B-III, C-I, D-II			a) A-III, B-IV, C-II, D-I	d) A-III, B-IV, C-	-I, D-II	d)

1 0 3	Given below are two sas Reason R: Assertion (A): If A is a elements in colum Justification (B): Lapla and column. In light of the above sagiven below:	ny matrix give n II are zero. ace expansion tatements, ch	on by $A = \frac{1}{2}$ permits ϵ	$\begin{bmatrix} 5 & 0 & 3 \\ -1 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$. Then $ z $ evaluation of a determinant appropriate answers.	A = 0, since all inant along any row wer from the options	Both statemen ts are true, and (B) is the correct explanati on of (A).	
	a) Both statements are true, and (B) is the correct explanation of (A).	b) Both state are true, is not the explanati (A).	but (B) correct on of	c) Statement (A) is true, but Statement (B) is false.	d) Statement (B) is true, but, Statement (A) is false.	a)	
1 0 4							
	a) 2	b) 3		c) -1	d) 5	d)	
1 0 5	'A' and 'B' are two matrices such that the order of 'A' is 3×4 . If AB and BA both are defined, then the order of 'B' is						
	a) 3 × 3	b) 3 × 4		c) 4× 3	d) 4× 4	c)	
1 0 6	If $r=1$, the angle bet	ween the two	regression	on lines is :		00	
	a) 90°	b) 0°		c) 45°	d) 60°	b)	
1 0 7	There are four assump List II.	l otions associa	ted with a	I a linear regression mo	l del. Match List I and		
	List I		List II				
	A. Linearity			variance of residual is e for any value of X.	the		
	B. Homoscedasticity	у	ii. Obse	ervations are		A-iii, B-i,	
	C. I. da canda can			pendent of each other		C-ii, D-iv	
	C. Independence			relationship between ? the mean of Y is linear			
	D. Normality			any fixed value of X, Y i	S		
			norm	nally distributed			
	Choose the correct an						
	a) A-iii, B-i, C-ii, D-iv	b) A-ii, B-i, C-	-iv, D-iii	c) A-ii, B-iv, C-i, D-iii	d) A-ii, B-i, C-iii, D-iv	a)	
1	Consider the Assertion	n (A) and Justi	fication (I	B) given below:		Both	
8	Assertion A: The value	e of the correl	ation coe	fficient is in the range	of -1 to +1.	statemen ts are true, but	
	Justification B: Correl a variable even if v Choose the correct an	ve know the v	alue of ar	nother variable.	oredicting the value of	(B) is not the	

					correct				
					explanati				
					on of (A).				
					511 OI (A).				
	a) Both statements	b) Both statements	c) Statement (A) is	d) Statement (B) is					
	are true, and (B)	are true, but (B)	true, but	true, but,	1-1				
	is the correct	is not the correct	Statement (B) is	Statement (A) is	b)				
	explanation of	explanation of	false.	false.					
	(A).	(A).							
1	A paired data set has	$n=5, \sum x = 15, \sum y = 2$	27 , $\sum xy = 100$ and $\sum x$	c ² =55. The value of	1.9				
0	the regression coefficient of y on x is								
9									
	a) 19	b) 1.9	c) -1	d) 0.5	b)				
_									
1		With a total sample size of 30, the statistics-F to test the regression equation with 3 independent variables has d.f.:							
1	ındependent varia	bies has d.f.:			(3, 26)				
0) (4. 00)			I I) (0, 00)					
	a) (1, 29)	b) (1, 26)	c) (3, 29)	d) (3, 26)	d)				
1	The formula for the Akaike Information Criterion (AIC) is								
1	The formula for the A	name information crite	11011 (7110) 13		AIC =2k -				
1					2ln(L)				
_	a) AIC =2k - 2ln(L)	b) AIC = -2ln(L) +	c) AIC =k - ln(L)	d) AIC = -ln(L) +					
	-,	kln(n)	-,	kln(n)	a)				
		(,		(,					
1	Suppose \hat{R} is the OLS	Lestimator of the coeffic	ient of R in a multiple li	inear regression					
1		riance of the error term							
2		iaussian-Markov Theore							
_	_	aussiaii-iviai kuv Tileure	eni, winch of these cont	dusions can be true:					
	•	1. $\hat{\beta}$ is the BLUE.							
	2. $\hat{\beta}$ is unbiased, but not always the best estimator.								
	_		imator.		1 only.				
	3. $\hat{\beta}$ is affected by ch	ange in σ^2 .			1 only.				
	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Mar	ange in σ^2 . kov Theorem guarantee	\hat{eta} is always equa	, <u>'</u>					
	3. $\hat{\beta}$ is affected by ch	ange in σ^2 .		l to β. d) 2 only	a)				
1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Mar a) 1 only.	ange in σ^2 . kov Theorem guarantee c) 1 and 2.	es that \hat{eta} is always equa c) 3 and 4.	d) 2 only	a)				
1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Mar a) 1 only.	ange in σ^2 . kov Theorem guarantee	es that \hat{eta} is always equa c) 3 and 4.	d) 2 only	a) R. A.				
1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Mar a) 1 only.	ange in σ^2 . kov Theorem guarantee c) 1 and 2.	es that \hat{eta} is always equa c) 3 and 4.	d) 2 only	a)				
	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Mar a) 1 only. The formula for inform	ange in σ^2 . kov Theorem guarantee c) 1 and 2.	es that \hat{eta} is always equac) 3 and 4. Hence the area are the content of the content was propounded by	d) 2 only y:	a) R. A. Fisher				
1 3	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher d)				
1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher				
1 3	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher d)				
1 3	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher d) with				
1 3 1 1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher d) with equal probabilit				
1 3 1 1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman ocess in which the treat	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded by c) Karl Pearson timents are allocated to	d) 2 only y: d) R. A. Fisher the experimental	a) R. A. Fisher d) with equal				
1 3 1 1	3. $\hat{\beta}$ is affected by ch 4. The Gaussian-Maria) 1 only. The formula for informal C. R. Rao	ange in σ^2 . kov Theorem guarantee c) 1 and 2. mation from an experim b) Charles Spearman	es that $\hat{\beta}$ is always equal c) 3 and 4. The ent was propounded because of the contract of	d) 2 only y: d) R. A. Fisher	a) R. A. Fisher d) with equal probabilit				

5	List II.									
	List I			List	II				7	
	A. CRD					•	involving tw			
	B. RBD				more factors at various levels. ii. the experimental units are					
	D. NOD				randomly assigned to the					
					different treatments.					
	C. LSD			iii.	a res	tricted ran	domized de	sign,		
				i	in wl	nich experi	mental unit	s are		A-ii, B-iii,
				first	organized i	nto			C-iv, D-i	
							olocks and t			
							are assigne			
							e units with	in		
	these blocks.									
	D. Factorial experiment iv. a method of placing treatments so that they appear in a									
						nced fashio				
							field, as we	ll as		
					-		earing once			
						row and c	_			
	Choose the co	orrect an	swer.							
	a) A-ii, B-i, C-i	ii, D-iv	b) A	-ii, B-i, C-iv, D	-iii	c) A-ii, B-	iii, C-iv, D-i	d) A	A-ii, B-iii, C-i, D-iv	c)
1 1 6	A: Assertion: influence: B: Justification	swer using the expertal the outcome in the outcome in the experiment of the experime	ng coo iment ome.	de. tal research, v	we ca	an not elim	inate extrai	neous	factors that	Both A and B are true but B is not the correct explanati
	collected.									on of A.
	a) Both A and	R aro	h\ D	oth A and B a	ro	c) A ic tru	e, but B is	4) v	is false, but B is	
	true and B			rue but B is n		false.	c, but b 13	-	true.	b)
	correct			he correct						5)
	explanatio	n of A.	е	xplanation of	f A.					
1 1	Find the value	es of A, B	, and	C from the gi	iven	ANOVA tal	ole.			
7	Source of	Sum of		Degree of	М	ean Sum	F			
	Variati		ares	Freedo		of				A=15,
	on	•		m		Squares				B=3, C=5
	Treatment	30		2	Α		С			
	Error	45		15	В					
	Total	75		17		ı				
	a) A=15, B=3,	C=5	-	=2, B=22.5, E=11.25		c) A=4.41	, B=3, C=5	d) A	A=15, B=5, C=3	a)
1	Which of the following is not a contrast among the three treatments?								$T_1 + 2T_2 - T_3$	

	a) $T_1 + 2T_2 - T_3$	b) $T_1 - T_3$		c) $T_1 - 2T_2 + T_3$	d) $-T_1 + 2T_2 - T_3$	a)				
1	Match the List I and Li	st II								
9	List I		List II							
•	A. Design of experim	nents	+	i. A subject receiving treatment						
				experiment.						
	B. Experimental unit			ii. a branch of Statistics						
	C. Treatment		iii. The a	iii. The allocation of treatments						
				to experimental units with						
				l probability.						
	D. Randomization			stance or a factor						
			hed to an experimer	ital						
			unit.							
	Chose the correct opti	ion.								
	a) A-ii, B-i, C-iv, D-iii	b) A-ii, B-iii,	C-i, D-iv	c) A-iii, B-ii, C-iv, D-i	ii d) A-ii, B-i, C-iv, D-iii	d)				
1	For the ANOVA table	- C		- CC 1						
2	Source of variations	Sum of squ	uares	Degree of freedo	oms	7.5				
U	Between treatments Error	45 32		3 16		7.5				
	Total	99		19						
	Total	99		13						
	The F-statistic is:									
	a) 7.2	b) 7.3		c) 7.4	d) 7.5					
						d)				
1	The layout,									
2	Α	С		В		l				
1	В	Α		С		Latin				
	С	В	A			square				
	stands for:					design				
	a) cross-over design	b) RBD		c) Latin square	d) CRD	c)				
	a) cross over design	אוואס		design	u) che	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
1	[2 0 0]				L					
2		. The given va	ariance co	variance matrix show	s the problem of	Heterosc				
2	lo 0 4J					edasticity				
	a) Auto-correlation	b) Non auto		c)	d) Homoscedasticity	c)				
	aj Auto Concidiion	correlatio		Heteroscedastic	·	",				
		30.10.00		у						
1	Match the List I and Li		1							
2	List I		List II							
3	A. White test		i. Stati	onary test		A-ii, B-iv,				
	B. Farrar-Glauber te	st	ii. Hete	roscedasticity test		C-i, D-iii				
	C. Dickey-Fuller Test			correlation test						
	D. Durbin-Watson to		iv. Mult	icollinearity test						
	Choose the correct an	hoose the correct answer.								

	a) A-ii, B-iv, C-i, D-iii	b) A-iv, B-ii, (C-i, D-iii	c) A-ii, B-iv, C-iii, D-i	d) A-i, B-iv, C-ii, D-iii	a)		
1 2 4	independent varia B: Justification : Multi	llinearity is a sobles in a regre collinearity ochigh correlation	ssion mo curs whe on with o	phenomenon that occuded are highly correlated two or more independents another in a regressed	d with each other. dent variables in a	Both A and B are true and B is the correct explanati on of A.		
	a) Both A and B are true and B is the correct explanation of A.	b) Both A and true but E the corre explanati	3 is not ct	c) A is true, but B is false.	d) A is false, but B is true.	a)		
1 2 5	$Y_t = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \varepsilon_t$ is an example of							
	a) Distributed lag model	b) Auto regre model	essive	c) Regression model	d) Moving average model	a)		
1 2 6	In the case of perfect multicollinearity, the value of the determinant of $X^\prime X$ is equal to							
	a) <1	b) 0		c) 1	d) >1	b)		
1 2 7	The distribution	n is a multivari	iate gene	ralization of the chi-squ	uare distribution.	Hotelling's T^2		
	a) Multivariate Normal	b) Hotelling's	s T ²	c) Wishart distribution	d) Univariate Normal	b)		
8	Choose the correct m A. $t = \frac{\bar{\mu} - \mu}{s/\sqrt{n}}$ B. $(t)^2 = \left(\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}/\sqrt{n}}\right)^2$ (simple linear regimodel) C. $n(\bar{x} - \mu)'\Sigma^{-1}(\bar{x} - \mu)$ D. $n(\bar{x} - \mu)'S^{-1}(\bar{x} - \mu)$	in case of ression – μ)	i. Follo distr ii. follov 1) di iii. follo n-2)	ws F-distribution with (a)		
	a) A-ii, B-iii, C-I, D-iv	b) A-ii, B-iii, (d) A-ii, B-iii, C-I, D-iv	A-ii, B-iii, C-I, D-iv		
1 2 9	Choose the correct m List I A. Characteristic fur multivariate norm B. Hotelling's T^2 -sta C. Mahalanobis' D^2 D. Walk's λ -critetion	nction of nal distribution atistic -statistic	Li i. n ii.	ist II $N(\bar{x} - \mu)'S^{-1}(\bar{x} - \mu)$ $\cdot (\bar{x}_1 - \bar{x}_2)'S^{-1}(\bar{x}_1 - \bar{x}_2)$ $\cdot \frac{ A }{ A+B }$ $\cdot e^{it'\mu - \frac{1}{2}tr\Sigma t}$		A-iv, B-i, C-ii, D-iii		

	a) A-iii, B-ii, C-i, D-iv	b) A-iv, B-i, C-ii, D-iii	c) A-iii, B-ii, C-iv, D-i	d) A-iv, B-ii, C-i, D-iii	b)			
1	Consider the following	g statements:						
3	A: Assertion: A use of	multivariate statistics i	in social science researd	ch has increased due	Statemen			
0	to the availability of	of statistical software.			t (A) is			
					true, but			
	B: Justification: Multi	variate statistics are ea	sier to comprehend as	compared to the	Statemen			
	bivariate statistics.		'	'	t (B) is			
					` '			
	Choose the correct an	swer from the given co	ode:		false.			
	a) Both statements	b) Both statements	c) Statement (A) is	d) Statement (B) is				
	are true, and (B)	are true, but (B)	true, but	true, but,				
	is the correct	is not the correct	Statement (B) is	Statement (A) is	c)			
	explanation of	explanation of	false.	false.				
	(A).	(A).						
1	Consider the following	, ,	ı	l	Statemen			
3			rger samples than univ	ariate studies.	t (A) is			
1			nalyse the data sets in		true, but			
	responses.		,	· ·	Statemen			
	Choose the correct an	swer from the given co	ode:		t (B) is			
					false.			
	a) Both statements	b) Both statements	c) Statement (A) is	d) Statement (B) is				
	are true, and (B)	are true, but (B)	true, but	true, but,				
	is the correct	is not the correct	Statement (B) is	Statement (A) is	c)			
			false.	false.				
	explanation of	explanation of	laise.	laise.				
1	(A).	(A).	l rincipal component vec	tors respectively	n 1 ic			
3		re correct about them	illicipal component vec	tors respectively,	p_1 is			
2	what statements a	ire correct about trieffi			orthogon			
					al to p_2			
	a) p_1 is orthogonal	b) p_1 is parallel to	c) variance along	d) variance along				
	to p_2	p_2	p_2 is bigger	p 1 is the same	A)			
	** P_=	P	than variance	to the variance	\ \frac{\sigma_{j}}{2}			
			along p_1	along p_2				
1	If the element c(1.2)	of the covariance matrix	x C is 114, what is the va		114,			
3	what is the meaning		K C 13 114, What is the W	ande or e(z,1) and	covarianc			
3	What is the meanin	.9.						
					е			
	a) 114, variance	b) 1/114, variance	c) 1/114, covariance	d) 114, covariance	d)			
1	This process is perform	med after extraction to	obtain a more interpre	table factor solution.	factor			
3					rotation			
4								
	a) factor	b) factor rotation	c) factor	d) factor	b)			
L	Normalization		optimization	interpretation	<u>, </u>			
1	Consider the following	g statements:			Statemen			
3								
5		•	<u> </u>	,	t (B) is true, but,			
1	curve is platykurtion.		al distribution the stans	lard deviation is 1.25	Statemen			
	times of mean dev		ll distribution, the stand	iai u ueviali011 15 1.25				
	umes of mean dev	iatiUII.			t (A) is			
1	Chaoca the correct and	scurar from the diverse	odo:		false.			
1	choose the correct an	iswer from the given co	ue.					

	a) Both statements b) Both statements			c) Statement (A) is			d) Statement (B) is		
	are true, and (B)		are true, but (B)		true, but			true, but,	۵)
	is the correct		is not the correct		Statement (B) is		is	Statement (A) is	d)
				ion of	false	•		false.	
		(A).							
1		Consider the following statements:							Statemen
3		A: Assertion: In negative skewness as the marks/scores increases the frequency decreases.							t (B) is
6									true, but,
	B: Justification : In negative skewness the test is too easy for the takers.								
	Chance the servest enginer from the given and a								
	Choose the correct answer from the given code:								
	a) Both statements b) Both statements c) Statement (A) is d) Statement (B) is								
	are true, and		are true, but (B)		true, but		•	true, but,	
	is the correct	(0)	is not the correct explanation of		Statement (B) is false.			Statement (A) is false.	d)
	explanation o	f							
	(A).	.	(A).		iaise.			ruise.	
1	A discrete rando	m vari		ne followir	ng probab	ility distrik	butio	on.	
3	X	1	2	3	4	5	6	7	
7	P(X)	K	2K	2K	3K	K ²	2K ²	² 7K ² +K	1/10
	. , ,		,		•			<u>'</u>	_,_,
	What is the value	of K	?						
					1				
	a) 1/10		b) 1/20		c) 1/30			d) 1/40	a)
1	Subway trains on	a cer	tain line run	every half	i f hour bet	ween mid	l-nigł	nt and six in the	
3								at a random time	1/3
8	during this pe								
	a) 1/2		b) 1/3		c) 1/4			d) 1/5	b)
1	Exponential distr	ibutio	n comprises	which of	l the follow	ing chara	ctori	stics?	
3	1) It is discrete d		•	WITHCIT OF	the follow	ing charac	CCC11.	3003:	
9	2) It is a family o								3 & 4
	3) It is a skewed								3 4 4
	4) The x value ra	nges	from zero to	infinity.					
	Which one of the	follo	wing options	is most a	ppropriate	e.			
	a) 1, 2, 3 & 4		b) 2, 3 & 4		c) 3 & 4			d) 2 & 4	c)
1	For a set of n independent and identically distributed random variables, what is the role							It is the	
1 4	of the <i>k</i> -th or	-		incany dis	stributed f	anuom Va	aridD	ies, wildt is tile fole	k-th
0	or the k-th or	uei si	atistic, $\Lambda(k)$!						
J									smallest
									observati
									on in the
									sample.
	a) It is the k -th		b) It is the k	:-th	c) It is th	e mean o	f	d) It is a random	
	smallest		largest			smallest		variable that	
	observation in	n	observat	ion in	obse	rvations.		represents the	a)
	the sample.	the sample. probability of the					,		
								k-th event	
								occurring.	
1	'								any
4									fraction
1	24							<u> </u>	

							of the populatio n	
	a) all units of the population	b) 50 per cent units		c) 5 per cent units of the population	d) any fraction of the population		d)	
1 4 2	Probability of drawing a unit at each selection remains same in:						srswr	
	a) srswor	b) srswr		c) both srswor and srswr	d) stratified sampling		b)	
1 4	Match List I and List II							
3	List I			List II				
	A. Stratified sampling		I.	The units/members ar				
				chosen to represent v				
				arears of characteristi defined				
	B. Cluster sampling		II.	Every unit had an				
					independent and equal chance of being picked up			
	C. Systematic samp	lling	Ш	. The units are groups a	_			
	c. Systematic samp	,,,,,,, ₀		chosen intact	iia arc			
	D. Dimensional sam	npling	IV	. The members are sele	-			
				using the interval obta	ained			
				by N/n; the N= Agrreg				
				n=desired sub aggrega	ate.			
	Choose the correct answer from the options given below:							
	a) A-II, B-I, C-IV, D-III	b) A-II, B-III, C-IV, [D-I	c) A-I, B-III, C-II, D-IV	d) A-III	, B-I, C-IV, D-II	b)	
1 4	a) A-II, B-I, C-IV, D-III Match List I and List I		D-I	c) A-I, B-III, C-II, D-IV	d) A-III	, B-I, C-IV, D-II	A-II, B-III,	
	-			c) A-I, B-III, C-II, D-IV	d) A-III	, B-I, C-IV, D-II	•	
4	Match List I and List I	a population are			d) A-III	, B-I, C-IV, D-II	A-II, B-III,	
4	Match List I and List I List I A. If all the units of	a population are lled than sampling	Li:	st II	d) A-III	B-I, C-IV, D-II	A-II, B-III,	
4	List I A. If all the units of surveyed, it is ca B. The errors other	a population are lled than sampling d as:	Li:	st II estimator	d) A-III	, B-I, C-IV, D-II	A-II, B-III,	
4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme	a population are lled than sampling d as: constants is called a timating a	Li:	estimator census	d) A-III	B-I, C-IV, D-II	A-II, B-III,	
4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for es	a population are lled than sampling d as: constants is called a timating a ed as	II.	estimator census . non-sampling error	d) A-III	B-I, C-IV, D-II	A-II, B-III,	
4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for es parameter is call	a population are lled than sampling d as: constants is called a timating a ed as	Li:	est II estimator census . non-sampling error . parameter given below:		B-I, C-IV, D-II	A-II, B-III,	
4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for esparameter is call Choose the correct a a) A-II, B-I, C-IV, D-III Consider the following	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, I ag statements:	List II.	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV	d) A-III	, B-I, C-IV, D-II	A-II, B-III, C-IV, D-I	
1 4	List I A. If all the units of surveyed, it is can B. The errors other errors are termed. C. Any population of D. A function for estimated parameter is call. Choose the correct and A-II, B-I, C-IV, D-III. Consider the following A: Assertion: No test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, I ag statements: provides a perfect p	Li: I. III. IV	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV re of a student's abilitie	d) A-III	, B-I, C-IV, D-II	A-II, B-III, C-IV, D-I	
1	List I A. If all the units of surveyed, it is can B. The errors other errors are termed. C. Any population of D. A function for estimated parameter is call. Choose the correct and A-II, B-I, C-IV, D-III. Consider the following A: Assertion: No test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, I ag statements: provides a perfect p	Li: I. III. IV	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV	d) A-III	, B-I, C-IV, D-II	A-II, B-III, C-IV, D-I	
1 4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for esparameter is call Choose the correct a a) A-II, B-I, C-IV, D-III Consider the followir A: Assertion: No test B: Justification: A test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, In g statements: provides a perfect p t is only one small sa	Li: II. IIII IV D-I	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV re of a student's abilitie le of a student's perforr	d) A-III	, B-I, C-IV, D-II	b) Both statemen ts are true, and	
1 4	List I A. If all the units of surveyed, it is can B. The errors other errors are termed. C. Any population of D. A function for estimated parameter is call. Choose the correct and A-II, B-I, C-IV, D-III. Consider the following A: Assertion: No test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, In g statements: provides a perfect p t is only one small sa	Li: II. IIII IV D-I	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV re of a student's abilitie le of a student's perforr	d) A-III	, B-I, C-IV, D-II	b) Both statemen ts are true, and (B) is the	
1 4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for esparameter is call Choose the correct a a) A-II, B-I, C-IV, D-III Consider the followir A: Assertion: No test B: Justification: A test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, In g statements: provides a perfect p t is only one small sa	Li: II. IIII IV D-I	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV re of a student's abilitie le of a student's perforr	d) A-III	, B-I, C-IV, D-II	b) Both statemen ts are true, and (B) is the correct	
1 4	List I A. If all the units of surveyed, it is ca B. The errors other errors are terme C. Any population of D. A function for esparameter is call Choose the correct a a) A-II, B-I, C-IV, D-III Consider the followir A: Assertion: No test B: Justification: A test	a population are lled than sampling d as: constants is called a timating a ed as nswer from the option b) A-II, B-III, C-IV, In g statements: provides a perfect p t is only one small sa	Li: II. IIII IV D-I	est II estimator census . non-sampling error . parameter given below: c) A-I, B-III, C-II, D-IV re of a student's abilitie le of a student's perforr	d) A-III	, B-I, C-IV, D-II	b) Both statemen ts are true, and (B) is the	

	a) Both statements are true, and (B) is the correct explanation of (A).	b) Both statements are true, but (B) is not the correct explanation of (A).	c) Statement (A) is true, but Statement (B) is false.	d) Statement (B) is true, but, Statement (A) is false.	a)		
1 4 6	Consider the following statements: A: Assertion: Sampling methods is an economical method. B: Justification: Under sampling, analysis of data is confined only to a fraction of the population. Choose the correct answer from the given code:						
	a) Both statements are true, and (B) is the correct explanation of (A).	b) Both statements are true, but (B) is not the correct explanation of (A).	c) Statement (A) is true, but Statement (B) is false.	d) Statement (B) is true, but, Statement (A) is false.	a)		
1 4 7	The number of possible samples of size 2 out of 4 population units without replacement is						
	a) 2	b) 4	c) 6	d) 12	c)		
1 4 8	A sample of 16 items from an infinite population having S.D.=4, yielding total scores as 160. The standard error of sampling distribution of mean is:						
	a) 1	b) 10	c) 20	d) 40	a)		
1 4 9	Supposing that, in cluster sampling s_w^2 represents the variance within the clusters and s_b^2 between clusters. What is the relation between s_w^2 and s_b^2 ?						
	a) $s_w^2 = s_b^2$	$b) s_w^2 \ge s_b^2$	c) $s_w^2 \le s_b^2$	$d) s_w^2 < s_b^2$	c)		
1 5 0							
	a) $s^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$	b) $s^2 = \frac{1}{n-1} \left\{ \sum x_i^2 - \frac{(\sum x_i)^2}{n} \right\}$	c) $s^2 = \frac{1}{n-1} \{ \sum x_i^2 - n\bar{x}^2 \}$	d) $s^2 = \frac{1}{n} \left\{ \sum x_i^2 - \frac{(\sum x_i)^2}{n} \right\}$	d)		