This booklet consists of 150 questions and pages.

RGUPET/2025/1004/110

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN PHYSICS

Full Marks: 150							Time: 3 Hours			
Roll No.										
Day and Da	ate of E	xamin	ation: _					 		
Signature o	of Invigi	lator(s	s)					 		
Signature o	of Candi	date _						 		
General In.	struction	ns:								

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	The "Mission Sudars primarily relates t	development of a multilayer ed air and missile defence system			
	a) a national	d) a national	(c)		
	renewable 	currency	a multilayered	mission to	
	energy mission	mission	air and missile defence system	modernise Indian Railways	
2	•	l al mission being imple	•	Institute of	Drone
		bay is related to the d			technology
	a) Helicopters	b) Dairy technology	c) Drone technology	d) Artificial intelligence	c)
3	North East India's fir to connect	st underwater tunnel			Numaligarh and Gohpur
	a) Dibrugarh and	b) Jorhat and	c) Numaligarh and	d) Guwahati and	c)
4	Dhemaji	Majuli ng statements are cor	Gohpur	North Guwahati	(a)
	B. Four players were C. Sweden was rank	e 51 st G7 summit in 20 e honoured with the K ed first in Global Inno or was Launched by Ind	hel Ratna Award 2025 vation Index 2024.		
	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D
5	B. Shri C P Radhakris C. India's rank in the	ngs are correct? en appointed as the ne shnan has been appoin e Human Developmen the 2 nd largest road n	nted as the Vice Presion t Index 2025 released	dent of India	(d)
	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only
6	Which of the following A. Palk Strait joins In	ng sentences is false?			
	l	is between India and I	Bangladesh		
		ne separates India and	-		
	D. The Durand Line is	s between Iran and Af	ghanistan.		
	a) A, B	b) B, C	c) C, D	d) B, D	(d)
7	· · ·	es do not occur on all f		•	A and R are
	Reason (R): The moo	n revolves round the e	earth in an eiliptical oi	rbit.	true but R doesnot explain A
	a) A and R are true	b) A and R are	c) A is true R is	d) R is true but A is	(b)
	and R correctly	true but R does	false	false	
	explains A.	not explain A.			

8	Right to equality is a	-					Fundamental right
	a) fundamental right	b) social right		c) cultural right	d) leg	al right	(a)
9	The author of the bo	ok "Midnight's	Childr	en" is-			Salman Rushdie
	a) Shakespeare	b) Leo Tolosto	ру	c) Salman Rushdie	d) R K	(Narayan	(c)
1	Match the organizati	ons with their h	neadqı	uarters:			
0						-	
	A. UNESCO			ew York			
	B. WHO		2. Pa	ris			
	C. UNICEF		3. Ge				
	D. IMF			ashington D.C.			
	a) A-3, B-2, C-4, D-1	b) A–2, B–3, C D–4	- 1,	c) A-2, B-4, C-3, D-1	d) A– D-	1, B-3, C-2, -4	(b)
1	He said, "Happy new	year!"					He wished me
1	The correct indirect s	speech of the al	bove is	S-			a happy
							new year.
	a) He said the new	b) He wished	me a	c) He said to me	d) I w	as wished a	(b)
	year was happy.	happy new	/	that happy new	ha	ippy new	
		year.		year.	ye	ar.	
2	Identify the correct sentence(s) from the following. A. One of my friends is a doctor. B. I don't know nothing about her. C. It is a two-hour journey. D. We will be definitely there at the yesterday's programme.						
	a) A, B	b) B, C		c) A, C	d) C,	D	(c)
1	"She drank the quantifier to fill in		was th	ere in the flask." The α	appropr	riate	little
	a) all	b) little		c) sour	d) fev	v	(b)
1	"a/ great /and/ realit	y/their/ theory	/in/th	ere/ disparity/is"			There is a
4	"a/ great /and/ reality/their/ theory/in/there/ disparity/is" The correct reordered meaningful sentence with the above jumbled words/phrases is- P. There is a great theory and their reality in disparity. Q. There is a great disparity in their theory and reality. R. Their great disparity is in a theory and reality there. S. Their great theory is a reality and in disparity there.						great disparity in their theory and reality.
	a) P	b) Q		c) R	d) S		(b)
1	The correct match of		anton	nyms is:	1		A-ii, B-iii, C-i,
5	A. Futile	, ,	i. Hel			1	D-iv
	B. Generic			ective		_	
	C. Hinder			dividual		1	
	D. Inception			ermination			
	a) A-i, B-ii, C-iii, D-iv	b) A-iii, B-ii, C- iii		c) A-iv, B-iii, C-i, D- ii	d) A-i iv	i, B-iii, C-i, D-	(d)
1	The total number of	I squares in the f	followi	ing figure is:			22

					T		
	a) 24	b) 20	c) 22	d) 18	(c)		
1 7	Fill in the blank in the ELFY GLHX ILJW				KLLV		
	a) KLLV	b) KLMX	c) JLLV	d) JLMX	a)		
1	_	neet as the only son o Vineet are related?	of the only brother of	his father's wife.	cousin		
	a) brother	b) cousin	c) uncle	d) son-in-law	(b)		
1 9	Which two numbers mathematically co	orrect?	\div 8 – 24 = 12	equation	6, 8		
	a) 6, 8	3 × 6 + 72 b) 6, 24	c) 3, 8	d) None	(a)		
2	If BANKER is coded as CAOKFR, then how would LAWYER be coded?						
•	a) LBWZES	b) LBWYFR	c) MAXYFR	d) MAXZES	c)		
2	Same error occurs at the same size in every measurement, and such errors can only be eliminated either by thinking through the sources of problems and removing them. This type of error is termed as:						
	a) Random errors	b) Systematic errors	c) Cascading errors	d) Perpetual errors	b		
2		_	nypothesis. A hypothe se, and whose truth is				
	a) A valid hypothesis is based on 'that exists'		c) A hypothesis can never be tested		d		
2	Which of the following hypotheses?	ng statements that co	uld be considered as v	ralid scientific	Answer		
	A. Eating two ounces disease. B. What is the best fe C. Macs are better th D. Briar's Aspirin cure						
	a) A, B	b) A, B, C	c) A, D	d) B, C	С		
2	•	or relationship' (A) and	d 'comment' (B) and s	•	Answer		
	A: Find how the spee temperature.	d of sound in air at fix	ed pressure depends	upon air			

	B: The control varia	ble is tempera	ture, and	the response variable	e is sound speed.	
	a) Functional	b) Function	al	c) Functional	d) Neither the	а
	relationship is	relations	hip is	relationship is	functional	
	correct and the	incorrect	t but	correct but the	relationship is	
	comment is	the com	ment is	comment is	correct nor the	
	true for the	true for t	the	false for the	comment is	
	relationship	relations	hip	relationship	true	
2	Relate 'sampling de	sign' and its 'm	nethod'			Answer
5	Sampling Design		Metho	d		
	A. Deliberate					
			sur	vey progresses		
	B. Simple random		ii. sam	ple drawn from a hete	erogeneous group	
	C. Stratified		iii purp	osive selection of par	ticular units	
	D. Sequential		iv. very	item in the population	on has an equal	
			cha	nce of inclusion		
	a) A-iii, B-iv, C-ii, D-	i b) A-ii, B-iv,	C-iii, D-	c) A-i, B-iii, C-ii, D-	d) A-iii, B-ii, C-iv, D-	а
		i		iv	i	
2	Number of observa	tions in a norm	al distril	oution is 1000. How m	any observations	Answer
6	will be there be	tween μ+1σ ar	<u>nd μ-1</u> σ			
	a) 500	b) 680		c) 720	d) 950	b
2	Which of the follow	ing are reason	s for citi	ng a paper?		Answer
7						
	A. use its ideas, de	initions, terms	in a Rese	earch		
	B. provides upcom	ng facts regard	ing unde	ergoing Research Ques	stion.	
	C. to adopt part/fu					
	D. to refer to data					
	a) A, B, C	b) B, C, D		c) A, C, D	d) A, B, D	С
2	Scholars who wish	to meet publica	ation exp	ectations mostly reso	rt to a variety of	Answer
8	techniques to ir	crease their ou	itput and	d crank up their citation	n ranking, which are	
	not considered	ethical. Identify	these to	echniques:		
	A. Gift authorship					
	B. Extensive experi	ments				
	C. Salami Slicing	_				
	D. Extensive refere			\	I	
_	a)A, B, C	b) A, B, D		c) B, C, D	d) A, C, D	d
2	Match the reference	es (APA 7 style):			Answer
9						
			-	. M., Siegelman, N., Ri	-	
				G., & Compton, D. L.		
		•	•	between set for varia	•	
				examining word- and o		
		•		nce. Journal of Educati		
		1 <i>14</i> (6), 1242–1	256. <u>htt</u>	os://doi.org/10.1037/	edu0000696	
				/az, A., & Rousmanier		
		•		motionally focused co	uple therapy.	
		American Psych	_			
		nttps://doi.org	/10.1037	<u>//0000436-000</u>		
			_	. L., & Drozda, N. (202	-	
			•	te mind-body health.	•	
	е	4. Bray (Eds.), <i>F</i>	romotin	g mind–body health ii	n schools:	

						1
			•	l health professionals	(pp. 11–26).	
		American	n Psychological	Association.		
		https://doi.c	org/10.1037/00	000157-002		
	D. Edited	iv. Taras. Z. (2024. May 30)	. Situational irony car	n be funny, traaic or	
	Book		ifying. howstu			
	Chapter			howstuffworks.com/a	orts/literature/situat	
	Chapter	ional-iror		iowstarrworks.com/c	irts/itterature/situat	
	-\ A : D :: C :			-/ A D C . D	1) A : D :: C ::: D	_
	a) A-i, B-ii, C-iv	', D-III D) A-II	, B-iii, C-iv, D-		d) A-i, B-ii, C-iii, D-	а
		1		iV	iv	
3	Which one of t	the following	refers to positi	ve skewness?		
0						
	a)	b)		c)	d)	С
	\sim	\				
	/	\				
			/ \			
	Mean - Median -				X Mean Madian Mode X	
		м	lean≃ Median¤Mode	Mode Median Mean		
3	How much is t	he degree of f	freedom for th	e following data table	رد ا	Answer
1						71150001
_	\$. No.	$X_{\underline{i}}$	Hypothesised mean	$D_i = \left(X_i - \mu_{H_0}\right)$	D_i^2	
			$m_{H_0} = 578 \text{ kg}.$			
	5	572	578	− 6	36	
	б -	578	578	0	0	
	7 8	570 572	578 578	-8	64 36	
	9	596	578	–6 18	324	
	10	544	578		1156	
	n=10			$\sum D_i = -60 \qquad \sum D_i^2 = 1$	816	
				····- (/····-) -		
—				T		
	a) 8	b) 9		c) 10	d) 18	b
3	a) 8 Find out the N		for the given	· '	d) 18	b Answer
3 2	•	ull hypothesis	for the given	table		
	Find out the N		Hypothesised me	table $D_i = (X_i - \mu_{H_0})$	d) 18	
	Find out the N	ull hypothesis X_i	Hypothesised me $m_{H_0} = 578 \text{ kg}.$	table $D_i = (X_i - \mu_{H_0})$	D_i^2	
	Find out the N s. No.	ull hypothesis	Hypothesised me $m_{H_0} = 578 \text{ kg.}$	table $D_i = (X_i - \mu_{H_0})$		
	Find out the N	ull hypothesis X_i	Hypothesised me $m_{H_0} = 578 \text{ kg}.$	table $D_i = (X_i - \mu_{H_0})$ -6	D _i ²	
	Find out the N S. No. 5 6 7 8	x _i 572 578 570 572	$H_{y}pothesised\ me$ $m_{H_0} = 578\ kg.$ 578 578 578 578 578	table $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6	D _i ² 36 0 64 36	
	Find out the N S. No. 5 6 7 8 9	x _i 572 578 570 572 572 596	$H_{y}pothesised\ me$ $m_{H_0}=578\ kg.$ 578 578 578 578 578 578	table $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18	D _i ² 36 0 64 36 324	
	Find out the N S. No. 5 6 7 8 9 10	x _i 572 578 570 572	$H_{y}pothesised\ me$ $m_{H_0} = 578\ kg.$ 578 578 578 578 578	table $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34	D _i ² 36 0 64 36 324 1156	
	Find out the N S. No. 5 6 7 8 9	x _i 572 578 570 572 572 596	$H_{y}pothesised\ me$ $m_{H_0}=578\ kg.$ 578 578 578 578 578 578	table $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18	D _i ² 36 0 64 36 324 1156	
	Find out the N S. No. 5 6 7 8 9 10 n=10	x, 572 578 570 572 579 574	$Hypothesised\ me$ $m_{H_0}=578\ kg.$ 578 578 578 578 578 578 578	table on $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\sum D_i = -60$ $\sum D_i^2 = -60$	D _i ² 36 0 64 36 324 1156	
2	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$	x _i 572 578 570 572 579 574 596 544	Hypothesised me $m_{H_b} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu H_0 = -578$ kg.	D_i^2 36 0 64 36 324 1156 1816 d) $\mu H_0 = \pm 578$ kg.	Answer
3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$	x _i 572 578 570 572 579 544 5. (b) μ Ho	Hypothesised me $m_{H_b} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table on $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\sum D_i = -60$ $\sum D_i^2 = -60$	D_i^2 36 0 64 36 324 1156 1816 d) $\mu H_0 = \pm 578$ kg.	Answer
2	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578$ kg What will be so	### style="background-color: blue;"> ### style=	Hypothesised me $m_{H_b} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$ What will be so	x _i 572 578 570 572 578 570 572 596 544 5. b) μ μ um of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu H_0 = -578$ kg.	D_i^2 36 0 64 36 324 1156 1816 d) $\mu H_0 = \pm 578$ kg.	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578$ kg What will be so	x _i 572 578 570 572 578 570 572 596 544 5. b) μ μ um of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$ What will be so	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$ What will be so	x _i 572 578 570 572 578 570 572 596 544 5. b) μ μ um of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$ What will be so	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) μ $H_0 = 578$ kg What will be so Derive from the	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) $\mu H_0 = 578 \text{kg}$ What will be so	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) μ $H_0 = 578$ kg What will be so Derive from the	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) μ $H_0 = 578$ kg What will be so Derive from the	s. b) μ Houm of the dev	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 $n=10$ a) μ $H_0 = 578$ kg What will be so Derive from the	S72 578 570 572 596 544	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 n=10 a) \(\mu \) Ho = 578kg What will be so Derive from the	S72 578 570 572 596 544	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 n=10 a) \(\mu \) Ho = 578kg What will be so Derive from the	S72 578 570 572 596 544	Hypothesised me $m_{H_0} = 578 \text{ kg.}$ 578 578 578 578 578 578 578 578 578	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D_i^2 36 0 64 36 324 1156 = 1816 d) $\mu_{H_0} = \pm 578 \text{kg}$. gression line?	Answer a Answer b
3 3	Find out the N S. No. 5 6 7 8 9 10 n=10 a) \(\mu + H_0 = 578 \text{kg} \) What will be so Derive from the	S72 S78 S70 S72 S96 S44 S.	Hypothesised me m _{H_o} = 578 kg. 578 578 578 578 578 578 578 57	table an $D_i = (X_i - \mu_{H_0})$ -6 0 -8 -6 18 -34 $\Sigma D_i = -60 \qquad \Sigma D_i^2 =$ c) $\mu_{H_0} = -578$ kg.	D _i ² 36 0 64 36 324 1156 1816 d) μ H ₀ = ± 578kg. gression line? d) undefined	Answer a Answer b

	Justification: It show	s a two tail	ed hypothe	esis test model at 90 p	ercent confidence	
	level			·		
	a) Assertion is true	b) Asserti	ion is	c) Assertion is true	d) Assertion is true	d
	and justification	false k	out and		and justification	
	explains the	justifi	cation	justification is	for the	
	Assertion	explai	ns the	true but does	Assertion is	
	Assertion			not explain the	incorrect	
	Assertion					
3	Match into pairs for the Statistical method with appropriate details mentioned:					
5						
	Statistical method		Details			
	A. Correlation		i. Order 2,	3, 4,		
	B. Polynomial regre	ssion	ii. More th	nan two population or	n same	
			charac	teristics		
	C. ANOVA		iii. Test of	homogeneity		
	D. Chi square		iv. Require	es only two variables		
	a) A-i, B-ii, C-iii, D-iv	b) A-iv, B	-i, C-ii, D-	c) A-iv, B-ii, C-i, D-	d) A-iii, B-i, C-ii, D-	b
		iii		iii	iv	
3	Which of the following	ng is diama	gnetic?			Answer
ò						
	a) CO ₂	b) O ₂		c) NO	d) O ₂ -	(a)
	, ,	-	la di eta de e	•	-,	
3	Match the following	liganas wit	n their den	ticity:		Answer
	A. NH ₃		; Ow	duidantata		
	B. EDTA			adridentate onodentate		
	C. Oxalate			exadentate		
	D. Porphyrin			dentate		
	D. I orphymi		12.			
		1			I	
	a) A-ii, B-iii, C-iv, D-i	-	III, C-I, D-	c) A-iv, B-iii, C-ii, D-		(a)
	to the cult of the College	iv		i.	iii	
3	In which of the follow	ving comp	ounds is the	e metal-metal bondin	g present?	Answer
3						
	a) NaCl	b) ZnO		c) Al ₂ O ₃	d) Cr ₂ Cl ₆	(d)
3			non-volati	le solute in 1 L of wate	er at 298 K. Calculate	Answer
9	the osmotic press	sure:				
	a) 2.44 atm	b) 1.33 at	tm	c) 0.22 atm	d) 0.11 atm	(a)
1	According to Henry's	law, the so	olubility of	a gas in a liquid is:		Answer
)						
	a) Independent of	b) Directl	•	c) Inversely	d) Exponential	(b)
	pressure.	propo	rtional to	proportional to	with pressure.	
		pressu	ıre.	pressure.		
4	If $f(x) = \begin{cases} \{ x-2 \}, \\ 0, \end{cases}$	$/(x-2)$ },	$x \neq 0$			Answer
1	(0,	otherw	use			VII3MEI
	a) -1	b) 1		c) 0	d) does not exist	d
1	_			e of $\frac{d^6y}{dx^6}$ is		
4						1 .
2	If $y = x^5 - 5x^4 + 5$	$x^{s}-1$, the	en the valu	e of $\frac{1}{dx^6}$ is		Answer

	1400 400			1	T		
	a) $120x - 120$	b) 120		c) 0	d) cannot be	С	
		<u> </u>			evaluated.		
3	Which of the following $[a, b]$ to satisfy Ro	•		a function f defined o	n closed interval		
5							
	,	nuous on closed interval $[a,b]$. Entiable on the open interval (a,b)					
	C. $f(a) = f(b)$	on the ope	en milervar ((u, v)			
	D. $f(k) = 0$ for at le	ast one l	$r \in [a, h]$				
	a) A and B	b) only D		c) B and C	d) Only C	b	
4	•				u) Only C	D	
4	A group which satisfi	es commu	tatively pro	perty is known a			
	a) Abelian group	b) Quotie	ent group	c) Coset group	d) Normal group	а	
4	Let M^T denotes trans	spose mati	rix of M and	I is identity matrix.	Match the following:		
5	Let 11 dell'otes train	spose man	in or 1-1 une	a 1 is identity matrix.	water the following.		
	A. M is idempotent		i. <i>M</i> =	$= M^T$			
	B. <i>M</i> is symmetric			$= -M^T$		A	
	C. M is skew-symmetric	otric	iii. <i>M</i> ²			Answer	
		בנוונ		$\frac{a^2 = I}{a^2 = M}$			
	D. M is involution		IV. M	r = M			
	a) A-iv, B-i, C-iii, D-ii	b) A-i, B-i	v, C-ii, D-	c) A-iv, B-i, C-ii, D-	d) A-iv, B-ii, C-i, D-		
		iii		iii	iii	С	
4	Relate the statement	ts:					
6	A: Assertion–SSDs ar	e faster th	an HDDs.			Answer	
	B: Justification–Beca	Allswei					
	a) Both A and B are	b) Both A	and B	c) A is true, but B is	d) A is false, but B		
	true, and B is	are tr	ue, but B	false	is true		
	the correct	is NO	Γ the			(a)	
	explanation of A	correc	ct			(a)	
		explai	nation of				
		Α					
4	Match the pairs:						
7							
	A. Machine Learnin	g	i Enables r	machines to understar	nd and process		
		-		language			
	B. Natural Language	5		a to learn and improv	e predictions		
	Processing (NLP)		autom			Answer	
	C. Computer Vision			s and interprets visua	l data like		
			-	and videos			
	D. Expert Systems			human decision-maki	ng using rules		
	D. Expert bystems			owledge base	ing doing raico		
	a) A – iv, B – i, C –	b) A – iv	B – iii, C –	c) A – ii, B – i, C –	d) A – iii, B – i, C –	1	
	iii, D – ii.	i, D –		iii, D – iv.	iv, D – ii.	(c)	
4				ed for AI and ML deve	-	Answer	
8	b0. «»	045- I			- 1		
	a) Python	b) JavaSc	ript	c) C#	d) HTML	(a)	
4	Which of the following	ng stateme	ent is true:			Answer	
9						Allowel	
	a) A byte is made	b) ROM i		c) A compiler	d) A firewall is	(d)	
	up of 16 bits.		ory that	translates high-	used to protect		
		loses	data	level code into	a computer		
		when	power is	machine code	network from		
		switch	ned off.	line by line.			
		-					

				unauthorized access.			
5	5 What is a network of networks called?						
0							
	a) Intranet	b) Internet	c) WAN	d) LAN	(b)		

5	The zeroth law of	Angyyon			
1					Answer
	a) Internal	b) Temperature	c) Entropy	d) Pressure	(b)
5	energy The chemical po	otential is defined as:			
2	A. Energy pe B. Entropy pe C. Gibbs free D. Internal er	Answer			
	a) Statement A	b) Statement B	(a)		
5 3	The partition fur	nction Z is fundament	ally related to:		Answer
	a) Probability of microstates	b) Energy fluctuations	c) Statistical weight of states	d) All of the above	(d)
5 4	A. Internal Ene B. Helmholtz F C. Gibbs Free D D. Enthalpy	Answer			
	a) A-1, B-2, C-3, D-4	b) A-2, B-1, C-4, D-3	c) A-1, B-3, C- 2, D-4	d) A-3, B-2, C-1, D-4	(b)
5	A. Zeroth law B. First law C. Second law D. Third law	Answer			
	a) A-3, B-4, C-1, D-2	b) A-2, B-4, C-1, D-3	c) A-4, B-2, C- 3, D-1	d) A–1, B–3, C–2, D–4	(c)
5	A. Microcanon B. Canonical E C. Grand Cano D. Isothermal	Answer			
	a) A-3, B-4, C-1, D-2	b) A-2, B-4, C-1, D-3	c) A-4, B-2, C- 3, D-1	d) A-1, B-3, C-2, D-4	(a)

5	The entropy cha					
7	is:	ge	.05010	a reversion		Answer
	a) ΔS=0	b) $\Delta S = Q \cdot T$	c) $\Delta \lambda$	S=T/Q	d) $\Delta S = Q/T$	(d)
5 8	The average ene	ergy of a quantum har	monic	oscillator at t	emperature <i>T</i> is:	Answer
	a) k_BT	b) $\frac{1}{2} k_B T$		$\frac{h\nu}{p\left(\frac{h\nu}{k_BT}\right)-1} + h\nu$	d) nhv	(c)
5 9	For an ideal Fer	Answer				
	a) Boltzmann energy	b) Fermi energy		hemical otential	d) Ground state only	(b)
6 0	Bose-Einstein condensation occurs when:					Answer
	a) System is extremely hot			ermions are sed	d) There are no quantum effects	(b)
6 1	The Ising model	is used to study:				Answer
	a) Electrical conductivit	b) Gas diffusion		lackbody adiation	d) Magnetism (spin interactions)	(d)
6 2	The principal qu	antum number n dete	ermine	es:	,	Answer
	a) Orientation of orbital	b) Energy leve and size of orbital		c) Spin of electron	d) Magnetic moment of atom	(b)
6	Fine structure in	atomic spectra arise	s due t	0:		Answer
	a) Spin–orbit interaction	b) Nuclear spi	n	c) External electric field	d) Lattice vibrations	(a)
6 4	Answer the followassertion (A): J. Reason (R): S. numbers.	Answer				
	a) A true, R false	e d) A false, R t	rue	a) Both A an R are true R explain A	e, and R are	(c)

6	Match the following							
6 5	Match the following:							
	A. Zeeman Effect	eman Effect 1. Electric field						
	B. Stark Effect		2. Strong magnetic field			Answer		
	C. Paschen–Back Ef	fect	3. Magne			Allswei		
	D. Hyperfine Structu			ar spin interaction	1			
	D. Hyperime structu	410	1. Tructor	ar spin interaction	1			
	a) A-3, B-1, C-2,	b) A-1, B	_3 C_4	c) A-2, B-1,	d) A-4, B-2,			
	D-4	D-2	J, C ¬,	C-3, D-4		(a)		
	D I	D 2		0 3, 1	C 1, D 3	(u)		
6	Match the following:							
6								
	A. Vibrational		1. Photor	n scattering				
	B. Rotational			wave region		Answer		
	C. Electronic			isible region				
	D. Raman			ed (IR) region				
	a) A-3, B-1, C-4, b) A-2, B-4, C-1, c) A-4, B-2, d) A-1, B-3,					(-)		
	D-2	D-3		C-2, D-4	(c)			
6	Match the following:							
7								
	A. Chemical Shift	1. Ele	ectron spin	resonance				
	B. Population Invers							
	C. ESR	3. Sh	ift due to c	chemical		Answer		
			vironment					
	D. NMR			in excited state				
		tha	an ground					
	a) A-3, B-4, C-1,	b) A-2, B	-4, C-1,	c) A-4, B-2,	d) A-1, B-3,			
	D-2	D-3		C-3, D-1	C-2, D-4	(a)		
_	A 1 1	11 11	. (5()	(II 1:) TEL:				
6	A hydrogen atom em	its radiation	at 656.3 r	im (H_{α} line). This	s corresponds	A		
8	to the transition:					Answer		
	a) $n=3 \rightarrow n=1$	b)2 \	1	c) $n=3 \rightarrow n=2$	d) ==4 \			
	$a) n=3 \rightarrow n=1$	b) $n=2 \rightarrow$	n=1	$C) n=3 \rightarrow n=2$	$\begin{array}{c} \text{d) } n=4 \rightarrow \\ n=2 \end{array}$	(c)		
6	Which selection rule	is correct fo	r rotations	l transitions in a				
9	molecule?	is confect to	n iotationa	ii ii alistiiolis iii a	rigiu diatolilic	Answer		
		1 \ A 7	1		1) A 7			
	a) $\Delta J = 0$ b) $\Delta J = \pm 1$ c) $\Delta J = \pm 2$ d) $\Delta J = \text{any}$					(b)		
_	Th. D 1 1	·	-41 1: :		integer	. ,		
7	The Doppler broadening of a spectral line increases with:					Answer		
U	a) Increase in	b) Decreas	se in	c) Increase in	d) Decrease			
	temperature	temper		,	in atomic	(a)		
	temperature	temper	ature	pressure		(a)		
7	For NMR, the Larmo	r frequency	is given h	V.	mass			
1	1 of Tylviix, the Latino	i irequericy	is given 0	у.		Answer		
_	$g(\mu) = g\mu_B B$	$b = \gamma B$		a) $a = hc$	d) $y = E$	4.)		
	a) $v = \frac{g\mu_B B}{h}$	b) $\nu = \frac{\gamma B}{2\pi}$		c) $v = \frac{hc}{\lambda}$	d) $\nu = \frac{E}{h}$	(b)		
7	The wave function ψ	(x,t) repres	sents:	•	1			
2	,					Answer		
	1					1		

	a) Energy of the system	b) Probability density directly	c) Probability amplitude	d) Momentum of the particle	(c) Probability amplitude
7	Normalization of w	Answer			
	a) $\int \psi ^2 dx = 1$	b) $\int \psi dx = 0$	$\int \psi dx = 1$	$\int \psi dx = 1$	$\int \psi ^2 dx = 1$
7 4	The principle that t state is called	wo identical ferm	nions cannot occupy	y the same quantum	
7	a) Uncertainty principleWhich of the follow	b) Exclusion principle wing statements a	c) Superpositio n principle	d) Correspondenc e principle	b) Exclusion principle
5	A. Observables in o B. Eigenvalues of o C. Operators alway D. Momentum and	quantum mechanioperators give poor	ics correspond to Hessible measurement each other.		Answer
	a) A, B and D	b) A and C	c) B and C	d) All are true	a) A, B and D
7	Which of the follow				
6	A. A wave function				
	B. The probability			1	
	C. A wave functionD. Normalization e	•	_	ompiex.	
	a) A, B and D	b) A and C	c) B and C	d) All are true	a) A, B and D
7	Which of the follow		_ /	() 1111 ure ure	u) 11, 2 unu 2
7	A. The time-indepe B. The solutions gi C. The Schrödinge D. The time-dependent the wave function	ve energy eigenv r equation is a po dent Schrödinger	alues and eigenfund stulate of Newtonia	an mechanics.	Answer
	a) A, B and D	b) A and C	b) B and C	c) All are true	a) A, B and D
7	A: Assertion : The zero				Answer
		te position and m	nomentum simultan	eously.	
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is true, B is false	d) A is false, B is true	a) Both A and B are true, and B is the correct explanation of A
7 9	Match the operator	s with their forms	s:		
	A Position operator	or i	$-i\hbarrac{\partial}{\partial x}$		
	B Momentum ope	erator ii	\hat{x}		Answer
	C Energy operator	r	$i\hbarrac{\partial}{\partial t}$		
	D Kinetic energy		$-\frac{\hbar^2}{2} abla^2$		
<u> </u>		1 V]

	a)	b)	c)		d)		b)
	A-iv, B-i,	A-ii, B-i,	A-ii	i, B-ii, A-i, B-iii,		A-ii, B-i,	
	C-iii, D-ii	C-iii, D-iv	C-iv	, D-i	C-ii, D-iv		C-iii, D-iv
8	Match the operator	s with their forms	s:				
0						_	
	A Principal quant	um number		i 0, 1, 2,	, n-1		
	B Azimuthal (orbi	ital) quantum nun	nber	$+\frac{1}{2},-$	-		Answer
	C Magnetic quant	um number	number		$1,2,3,\ldots$ (positive integers)		
	D Spin quantum n	umber		$i_{ ext{V}}$ $-l,\ldots,0,$	$,\dots,+l$		
	a)	b)	a)		b)		b)
	A-iv, B-i,	A-iii, B-i,	A-iv	, B-i,	A-ii, B-i,		A-iii, B-i,
	C-iii, D-ii	C-iv, D-ii	C-ii	i, D-ii	C-iii, D-iv		C-iv, D-ii
8	The de Broglie way	velength of a parti	icle of	f mass m and	velocity v is gi	ven	Answer
1	by:						
	a)	b)	a)		b)		$\lambda = h/mv$
	$\lambda = h/mv$	$\lambda = hv$	λ =	= mc²/h	$\lambda = hv/c$		(a)
				, , ,			

82	What is displace	ment current?			b)
	a) The current due to free charges only	b) The current that produces a magnetic field in a capacitor even when no conduction current flows	c) The current in a wire	d) The current due to ions in a solution	The current that produces a magnetic field in a capacitor even when no conduction current flows
83	The Poynting ve	ector is			c)
	a) The vector representing electric potential	b) The vector representing magnetic flux density	c) The vector representing the directional energy flux (power per unit area) of an electromagnetic field	d) The vector representing charge density	The vector representing the directional energy flux (power per unit area) of an electromagnetic field
84	The total numbe surface is call		lines passing normall	y through that	d)
	a)flux	b)dipole	c)magnetic flux	d)electric flux	electric flux

85	Match the physic	cal quanti	ties with	n their SI units:		a)
	1.Magnetic flux	v		a) Charge metre (Cm)	
	2.Electric dipol		ıt.	b) Weber (Wb)	CIII)	
	3.Electric poter			c) Volt (V)		
	4. Electric charge			d) Coulomb (C)		
	4. Licetiic chai	<u>.gc</u>		u) coulomb (c)		
				c) $1 \rightarrow c, 2 \rightarrow a,$		$1 \rightarrow b, 2 \rightarrow a, 3$
	$a, 3 \rightarrow c, 4$	b, 3 -	→ c, 4	$3 \rightarrow b, 4 \rightarrow d$	$d, 3 \rightarrow c, 4$	\rightarrow c, 4 \rightarrow d
	\rightarrow d	\rightarrow d			\rightarrow a	
86	Match the pheno	omena wit	h the co	prrect physics branch:		a)
	1. Skin effect		a) The	e tendency of alternat	ing current	
				low near the surface of		
			con	ductor		
	2. Electromagn	netic	b) A w	vave consisting of osc	illating	
	wave			ctric and magnetic fie		
			per	pendicular to each oth	ner	
	3. Ampere's C	ircuital	c) The	e line integral of mag	netic field	
	Law		aro	und a closed loop is		
			pro	portional to the curre	nt enclosed	
	4. Poynting ve	ector		ne rate of energy flow	-	
			area	a in an electromagnet	ic wave	
	a) $1 \rightarrow a, 2 \rightarrow$	b) 1 → l	$0, 2 \rightarrow$	c) $1 \rightarrow a, 2 \rightarrow b,$	d) $1 \rightarrow a, 2 \rightarrow$	$1 \rightarrow a, 2 \rightarrow b, 3$
			→ c, 4	$3 \rightarrow d, 4 \rightarrow c$		\rightarrow c, 4 \rightarrow d
07		\rightarrow d	1 1	A 1	→ b	,
87				e area A and separation		a)
				ε. If the electric field		
	plates is E, w a) $\varepsilon E^2/2$	b) $\varepsilon E/2$	energy o	density stored in the concept c $E^2/2\varepsilon$	d) εE^2	$\epsilon E^2/2$
0.0	,	,	10E:-	,	,	
88	_		•	charged to a potentia	al difference of	a)
	100V. What i		gy store		4/0.51	0.051
90	a)0.05J	b)0.1J	ioria ia :	c)0.25J	d)0.5J	0.05J
89				propagating in the +z axis, then the magneti		a)
	a) Along the				d) Zero	Along the weeks
	,	b) Along z-axis	_	c) Opposite to the x-axis	everywhere	Along the y-axis
90	y-axis			current is necessary t	,	a)
90	Ampere's lav		CHICIIL	current is necessary t	o moun y	(a)
	•		he displ	acement current term	Ampere's law	
				ne continuity equation		
	a) Both A and	b) A is tr	ue.	c) A is false, but R	d) Both A and	Both A and R are
	R are true,	but R		is true.	R are true,	true, and R is
	and R is the	false.			but R is not	the correct
	correct				the correct	explanation of
	explanation				explanation	A.
	of A.					

				of A.	
91	fields are perpropagation. Reason (R):	pendicular to each The perpendicular	etic wave, the electric nother and to the dire r arrangement of E ar ations in free space.	ction of	d)
	a) A is false, but R is true.	b) A is true, but R is false.	c) Both A and R are true, but R is not the correct explanation of A.	d) Both A and R are true, and R is the correct explanation of A.	Both A and R are true, and R is the correct explanation of A.
92	Match the Electric field	omagnetic Quant	ities with their Corres	sponding Units.	a)
	2.Magnetic flux	x density	b) Volt per meter		
	3.Electric displ	acement	c) Coulomb per so	quare meter	
	4.Magnetic fiel		d) Ampere per me	1	
		b)1-b, 2-a, 3-	c)1-b, 2-d, 3-c,	d)1-d, 2-a, 3-	1-b, 2-a, 3-c, 4-d
	c, 4–d	d, 4–c	4–a	c, 4–b	

93	The Miller indices	(1 0 0) represent when the control of the control o	hich plane in a cubio	c crystal?	Plane parallel to y and z- axis
	a) Diagonal plane	b) Plane parallel to y and z-	c) Plane parallel to x and y-	d) Plane passing through the	b
94	Examine the follow	axis wing statements:	axis	origin	
	A Due to weak dis have low meltir		don forces), molecu	lar solids like I2	
		ecule of H ₂ O combination of the combination of th	nes tetrahedrally wi	th four H ₂ O	A-True, B- False, C- True, D-
	C Strong Coulomb like NaCl and M		een constituent ions	in the substances	False
		nt particles in NaCl lectricity in the solid	and KCl are ions, the state.	ney are good	
	a) A-True, B- False, C-True, D-False	b) A-False, B- False, C-True, D-False	c) A-True, B- False, C-True, D-True	d) A-True, B- False, C- False, D-False	a

95	Type Questions he	re for matching	pair	·s:		
	A Sodium chloric		_	drogen bonding		A-iii, B- iv,
	B Dimond			etallic bonding		C-ii, D-i
	C Magnesium			onic bonding		
	D H ₂		1V C	ovalent bonding		
	a) A-ii, B- iv, C- iii, D-i	b) A-iii, B- iv, ii, D-i	C-	c) A-iv, B- iii, C- ii, D-i	d) A-i, B- iv, C- ii, D-iii	b
96	The value of magn			in the case of antife		
	B get oriented opp	osite to the direction osite to the direction of the dire	ction	pplied magnetic fiel n of the applied mag to each other without to each other without	netic field	A-False, B- False, C- True, D- True
	\	1) A T D		NAE1 D	1) A T D	
	a) A-True, B-	b) A-True, B-		c) A-False, B-	d) A-True, B-	
	False, C- False, D-False	False, C-Tr D-False	ue,	False, C-True, D-True	False, C- False, D-True	С
97	Choose the correct		he f		raise, D-11ue	A and B both
	A: Assertion: Grap belongs to the c	white is a good contact at a good contact at a good contact and a good	ondı ator	actor of electricity h		are correct statements but B is not correct explanatio n for A.
	a) A and B both are correct statements and B is correct explanation for A.	b) An and B be are correct statements B is not correct explanation for A.	but	c) A is correct statement but B is wrong statement.	d) A is wrong statement but B is correct statement.	b
98				band and conduction band and conduction band and conder of		Eg (diamond) > Eg (silicon) > Eg (germaniu m)
	a) Eg (diamond) > Eg (silicon) > Eg (germanium)	b) Eg (diamon < Eg (silico < Eg (germaniun	n)	c) Eg (diamond) = Eg (silicon) = Eg (germanium)	d) Eg (diamond) > Eg (germanium) > Eg (silicon)	a

99	_	s in Column A	with	the related phenome	ena or definitions	
	in Column B: A Meissner Effec	.+	; E _v	nulsian of magnetic	field	
	B Band Gap	i.		pulsion of magnetic nergy separation in s		
	C Brillouin Zone			aired electrons in	Solius	A-i, B-ii, C-
	C Dimouni Zone			uperconductor		iv, D–iii
	D Cooper Pair			irst zone in reciproc	<u>al</u>	
	D Cooper I am			pace	aı	
	a) A-i, B-ii, C-	ь		•	d) A-iv, B-i, C-	
	iv, D–iii	b) A–ii, B–iii, i, D–iv		ii, D–iv	iii, D–ii	a
10	Which one of the f	following show	s ant	iferromagnetism?		MnO
	a) MnO	b) TiO ₂		c) O ₂	d) Fe	a
10	Cations are presen	t in the interstit	ial si	tes in		Frenkel defect
	a) Frenkel defect	b) Schottky defect		c) vacancy defect	d) metal deficiency defect	a
10 2	Features are not sh A it is a crystalline B refractive index C is opaque D it is also called s	solid is same in all th	ne di			A-False, B- True, C- False, D- True
	a) A-True, B- True, C-True, D-False	b) A-True, B- False, C-Tr D-False		c) A-False, B- True, C-False, D-True	d) A-True, B- True, C-False, D-True	c
10	The energy band g		rs is:			
3	The energy cana g	op m comouco	10 10.			Zero
	a) Large	b) Small		c) Zero	d) Infinity	С
10 4	Which of the follo	wing best descr	ribes	the Meissner effect	?	Superconduct ors expel magnetic fields
	a)	b)		c)	d)	
	Superconduct	Supercond		Superconduct	Superconduct	
	ors emit light	ors become	e	ors expel	ors allow	С
		magnetic		magnetic	magnetic	
1.0	TI DOC 1	1 .		fields	fields inside	TI .
10 5	The BCS theory ex	xplains superco	nduc	tivity on the basis of	Ī	Electron- lattice interaction
	a) Electron-	b) Hole		c) Magnetic	d) Photon-	
	lattice interaction	conduction	1	ordering	electron interaction	a

106	Consider the follow				diode:	
	1. In forward bias,					Answer
	2. In reverse bias, a	small leakag	e curre	ent flows.		7 Mis w Ci
	a) 1 and 2 both	b) 1 and 2 bc	th	c) Only 2 is	d) Only 1 is	
	are True	are False		True	True	(a)
107	Assertion (A): In a		tter co	onfiguration, the	transistor shows	
	high voltage gain			•.		
	Reason (R): The	e output resist	ance 11	n common-emit	ter mode is very	Answer
	high. Choose the correct	option on the	basis d	on above statem	ents:	
		option on the	o u sis (cinto.	
	a) Both A and R	b) Both A an	d R	e) A is true,	d) A is false,	
	are true, and R	are true, b		but R is	but R is true.	
	is the correct	R is not th	ie	false.		
	explanation of	correct				(c)
	A.	explanation of A.	on			
		or A.				
108	Match the electroni	c components	with t	heir functions:	<u> </u>	
	A. Resistor	i Stores				
	B. Capacitor	ii Provid				Answer
	C. Diode			vitch/amplifier	··	
	D. Transitor	IV. Allo	ws cur	rent in one direc	ction	
	a) A(ii), B(i),	b) A(i), B(iii) (c) A(iii), B(ii),	d) A(i), B(ii),	
	C(iv), D(iii)	C(ii), D(ii		C(i), $D(iv)$	C(iii), D(iv)	(a)
109	In a CRO (Cathode					
		-	_			Answer
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1) 0	1		10.34	
	a) Control vertical deflection	b) Contro horizo		c) Increase sensitivity	d) Measure resistance	
	deffection	deflec		sensuvity	resistance	(b)
		derice	tion.			
110	Match the types of	logic gates wi	th thei	r truth table out	puts:	
	A. AND Gate			put is high only oth inputs are high		
	B. OR Gate			th inputs are high if a		
	D. OR Gate			high	my mput	
						Answer
	C. NOT Gate			utput is the inve	erse of	
			in	put		
	D. NAND Gate		iv O	utput is opposite	of AND	
	D. NAND Gale		iv. O		TOI AIND	
			5ª			
	a) A(ii), B(i), C(iv)	, b) A(i), l	B(ii),	c) A(ii), B(i),	d) A(ii),	
	D(iii)	C(iii)		C(iii),	B(iii),	(b)
		D(iv)		D(iv)	C(iv),	
					D(i)	

111	Which logic gate giv	es output 1 only	when all inputs ar	re 1?	Answer
	a) OR	b) AND	c) NAND	d) XOR	(b)
112	In a photoelectric eff	ect experiment, i	ncreasing the inte	ensity of light:	Answer
	a) Increases the stopping potential	b) Decreases the kinetic energy of emitted electrons	c) Increases the number of emitted electrons	d) Has no effect on the number of electrons	(c)
113	In a Scanning Electronal conductive coat		•	ecessary to have	Answer
	a) To enhance the atomic number contrast	b) To prevent charging of the sample surface	c) To increase the electron wavelength	d) To allow transmission of electrons through the sample	(b)
114	The operational amp follower.	lifier (op-amp) ca	annot be used as a	voltage	Answer
	a) True	b) False	c) Only in AC circuits	d) Only in DC circuits	(b)
115	Assertion (A): In a rif the circuit is po Reason (R): The resistor to measur Choose the correct o	wered. multimeter passe e its resistance.	s a small current	through the	Answer
	a) Both A and R are true, and R is the correct explanation of A.	b) Both A and R are true, but R is not the correct explanation of A.	c) A is true, R is false.	d) A is false, R is true.	(a)
116	If a student wants to instrument is logic		uctures at atomic	scale, which	Answer
	a) TEM	b) SEM	c) Optical Microscope	d) Mass Spectrometer	(b)
117	A small compass need brought nearby. V brought closer?			_	Answer
	a) Magnetic field strength	b) Magnetic field strength	c) Magnetic field is	d) Compass sensitivity increases	(b)

increases with decreas distance with distance	independent of distance
---	----------------------------

118	The curl of a gradient		Always zero		
	a) Equal to ∇^2 φ	b) Always zero	c) A constant vector	d) Undefined	b)
119	What is the dimensio Time (T)?	MLT^(-2)			
	a) MLT^(-2)	b) ML^2T^(-2	c) MLT^(-1)	d) ML^2T^(-1)	a)
120	Choose the correct of				,
	A: The variance of a B: In a binomial distr (symbols having the	ibution, variance	is np(1–p) and m		A is false, but R is true.
	a) Both A and R are true, and R is the correct explanation of A.	b) Both A and R are true, but R is not the correct explanation of A.	c) A is false, but R is true.	d) Both A and R are false.	c)
121	A Dirichlet condition Fourier Series) B Fourier Transform delta function C Laplace Transform e^{-at}, where a D Fourier Transform constant function	ns (for i $2\pi\delta$) n of a ii 1 n of iii 1/0 >0 n of a iv Fun above	(s + a) nction must be solutely integrable er a period		A-iv, B-ii, C-iii, D-i
	a) A-iv, B-i, C-iii, D-ii	b) A-iv, B-ii, C- iii, D-i	c) A-iv, B-ii, C-i, D-iii	d) A-iv, B-i, C- ii, D-iii	b)
122	Let $f(z)= z ^2$, where			•	nowhere
	a) along the real axis	b) everywhere	c) nowhere	d) only at the origin	c)

123	Match the functions v					
	A Hermite polynom	ials	i Harma	onic oscillator		
	B Bessel functions	iais		drical symmetry	,	A-i, B-ii, C-iii,
	C Laguerre polynon	nials		ogen atom (radi	-	D-iv
	D Legendre polynor	nials		rical symmetry		
	a) A-i, B-ii, C-iii,	b) A-ii, l	B-i, C-	c) A-i, B-ii,	d) A-i, B-iii, C-	2)
	D-iv	iii, D		C-iv, D-iii	ii, D-iv	a)
124	Which of the following series? A Laurent series include B Both series are valid. C Taylor series converted.	Laurent series includes negative powers of z;				
	D Laurent series can			-		does not.
	a) A	b) B		c) C	d) D	a)
125	Assertion (A) and Re	ason (R) a	are given		em carefully and	
	A: The Poisson distri Binomial distribut and the probability R: The Poisson distri of an event in a fix average rate.	Both A and R are true, but R is not the correct explanation of A				
	a) Both A and R are true, and R is the correct explanation of A	the co	true, is not	c) A is true, but R is false	d) A is false, but R is true	b)
126	Match Column A (Situations / Concepts) with Column B (Descriptions) A Tossing a fair coin once i Continuous random variable B Temperature measured over time in a lab experiment C Number of defective bulbs in a box of 10 distribution				A-iv, B-i, C-ii, D-iii	
	D Height distributio	n of	iv Bina	ry outcome rand	om	
	students in a coll		varia			
	a) A-i, B-iv, C-ii, D-iii	b) A-iv, iii, D		c) A-iv, B-i, C-ii, D-iii	d) A-iv, B-ii, C- i, D-iii	c)

127	Find the Laplace transform of t^2e^{3t} .						$\frac{2}{(s-3)^3}$
	a) $\frac{2}{(s-3)^3}$ b) $\frac{6}{(s-3)^3}$ c) $\frac{2}{(s+3)^3}$ d) $\frac{6}{(s+3)^3}$					a)	
128							
	A Laplacian operato	r on	i Conve	rts a surface inte	egral		
	scalar ø		of cu	rl of a vector fie	eld		A :: D : C : D
			into a	a line integral ov	A-ii, B-i C-iv, D- iii		
			its bo	oundary			
	B Stokes' theorem		ii $\nabla^2 \phi = \nabla \cdot (\nabla \phi)$				
	C Divergence theore	em	iii Farac	lay's law			
	D curl of an electric	c field	iv Gaus	s' Theorem			
	a) A-iii, B-i C-iv,	b)A-i, B	-ii, C-	c) A-ii, B-i,	d) A	-ii, B-i C-	c)
	D-ii	iv, D-	·iii	C-iv, D-iii	ii	i, D-iv	()
129	The solution of the in		e problem	1:			y(x) = x -1 +
	y' + y = x; y(0)	= 1					$2e^{-x}$
	is						
	(x) y(x) = x + 1	b) y (2 1 + 2	$x(x) = x - 2e^{-x}$	c) $y(x) = x + 1 + 2e^{x}$	d) e^ 1)	$y(x) = \{x\}(x + $	b)

130		Which of the following quantities is conserved if the Lagrangian does not depend explicitly on time?						
	a) Linear momentum	b) Angular momentum	c) Total energy	d) Generalized coordinate	c)			
131	If a system is invariant quantity?	nt under spatial tr	anslations, what i	s the conserved	Linear momentum			
	a) Angular momentum	b) Linear momentum	c) Hamiltonian	d) Acceleration	b)			
132	A Newton's first law B A net force is requi C Newton's third law D Newton's second la momentum.	A-True, B- False, C- True, D- True						
	a) A-True, B-False, C-True, D-True	b) A-False, B- True, C- True, D- True	c) A-False, B- True, C- False, D- True	d) A-True, B-True, C-True, D-True	a)			
133	A: In elastic collision of-mass (CM) fran	Both A and R are true, but R is not the correct						

						explanation
	R: The total momentu		•			of A
	a) Both A and R are true, and R is the correct explanation of A	the co	true, is not	c) A is true, but R is false	d) A is false, but R is true	b)
134	Match the approximations given in Column A with the physical problems given in Column B: A Linear restoring force i Simple harmonic motion B Taylor expansion of ii Near equilibrium to find potential force				A-i, B-ii, C- iii, D-iv	
	C Ignore damping & D Equal masses & s		sys Iv Syr	ideal conservative tems nmetry in coupled tems		
	a) A-i, B-ii, C-iii, D-iv	b) A-iv, C-iii,	D-i	c) A-i, B-iv, C- iii, D-ii	d) A-i, B-ii, C-iv, D-iii	a)
135						The rate at which it sweeps out area with respect to the Sun
	a) Its orbital speed	b) Its dis from Sun		c) The rate at which it sweeps out area with respect to the Sun	d) Its gravitational potential energy	c)
136	Match the term with i	ts descrip	tion	l		
	A Phase space B Stability of equilil C Coupled oscillator		ii Spac mo	uency of a normal de of vibration ce of position and mentum variables ether small	5	A-ii, B-iii, C- iv, D-i
	D Normal frequency	7	dec iv Osc	turbances grow or cay cillators linked so ect each other		
	a) A-ii, B-iv, C-iii, D-i	b) A-ii, C-iv,		c) A-i, B-iii, C-iv, D-ii	d) A-ii, B-iii, C-iv, D-i	d)
137	A neutral, non-relative $V(x) = \alpha x^4$ with $\alpha = 0$ particle	istic parti	cle of n	nass m=1kg move is the equation of	s in a potential	$\ddot{x} + 8x^3 \\ = 0$
	$a) \ddot{x} + 8x^3 = 0$	b) $\ddot{x} - 8$	$x^3 =$	$\begin{array}{c} c) \ddot{x} + 4x^3 = \\ 0 \end{array}$	$\begin{array}{c} d) \\ \ddot{x} - 4x^3 = 0 \end{array}$	a)

138										
	and rotational mot	ion:								
	A The moment of inertia tensor depends on the choice of origin.									
	A – True, B – True, C									
	B The kinetic energy of a rotating rigid body can be written as $T = \overrightarrow{\omega}^T \overline{l} \overrightarrow{\omega}$ C If a rigid body is symmetric about an axis, that axis is always a principal									
	axis. D The moment of inertia tensor changes with time for a freely rotating rigid									
	body.									
	a) A – True, B –	b) A – False,	c) A – True,	d) A – True, B –						
	False, C –	B – True,	B – True,	True, C –						
	True, D –	C – True,	C – False,	True, D-	d)					
	False	D – True	D – False	False						
139	Choose the correct an			<u> </u>						
		<i>U</i> = <i>O</i> =	<i>G</i>							
	A: The angular veloc	ity vector always	lies along one of	the principal axes	A : C 1 1 4					
	of the rigid body.				A is false, but					
					R is true					
	R: The angular mome	entum vector is a	lways aligned witl	h angular velocity						
	for any rigid body.	•								
	a) Both A and R	b) Both A and	c) A is true, but	d) A is false, but R						
	are true, and R is	R are true,	R is false	is true						
	the correct	but R is not			d)					
	explanation of A	the correct			(d)					
	_	explanation								
		of A								
140	State whether the foll	owing statement	s are True or False	2:						
	A In small oscillation	s, the potential e	nergy can be appr	oximated as a						
	quadratic function				A – True, B					
	B All normal modes of	-		cillate at the same	– False,					
	frequency.		-		C – True,					
	C The number of nor	mal modes in a s	ystem of N degree	es of freedom is N.	D – True					
	D In normal mode mo									
	frequency but diffe	erent amplitudes.	<u> </u>							
	a) A – True, B –	b) A – True,	c) A – False,	d) A – True, B –						
	False, C –	B – True,	B – False,	False, C –	9)					
	True, D – True	C – True,	C – True,	False, D –	a)					
141	141 In a certain frame, a photon and an electron are moving in the same									
	direction. The speed of the photon is:									
	a) Equal to the	b) Slightly	c) Exactly c	d) Frame-						
	speed of the	less than c) Laucity C	dependent	c)					
	electron	Too man		a spendent	- /					
L	010001011		1	I						

142	A Minkowski space B 4-momentum C Light cone D Frame-dependent simultaneity	time	i The sever or light ii A get what treating iii Remais iv Ever simine.	set of spacetime ents that can influe be influenced by a ht signal cometric framewon ere space and time ated as unified ent elativistically invar- gnitude ents that are nultaneous in one ertial frame may no	rk e are ities riant	A-ii, B-iii, C- i, D-iv
	a) A-ii, B-iii, C-i, D-iv	b) A-iii, C-i, I	B-ii, D-iv	c) A-iv, B-iii, C-i, D-ii	d)A-ii, B-i, C-iii, D-iv	a)
143	The Hamiltonian $H(q,p)=p^2/2m + V(q)$ for a particle of mass 'm' is conserved if					V(q) does not explicitly depend on time
	a) V(q) explicitly depends on time	b) V(q) not exp depend time	olicitly	· • •	d) q explicitly depends on time	b)

144	The binding energy	Answer: Iron- 56				
	a) Hydrogen	b) Helium-4	c) Iron-56	d) Uranium- 238	(c)	
145	The semi-empirical	Answer: Liquid drop model				
	a) Pauli exclusion principle	b) Fermi- Dirac statistics	c) Shell Model	d) Liquid drop model	(d)	
146	Neutrino oscillations imply:					
	a) Neutrinos are massless	b) Lepton number is not conserved	c) Neutrinos have small but finite mass	d) Time reversal symmetry	(c)	

147	A is the assertion a				
	A: Free neutrons an B: Beta decay conv	Answer: Assertion true, reason true, reason correct explanation			
	a) Assertion true, reason true, reason correct explanation	b) Assertion true, reason true, but not correct explanation	c) Assertion true, reason false	d) Assertion false	(a)
148	A gamma photon w positron pair. W	Answer: Pair is produced with zero kinetic energy			
	a) Pair is not produced	b) Pair is produced with zero kinetic energy	c) Pair is produced with additional photons	d) Process forbidden	(b)
149					
	 Positron Electron Helium nucleus Photon 	Answer: 1–A, 2– B, 3–C, 4–D			
	a) 1–C, 2–D, 3–B, 4–A		c) 1–A, 2– B, 3–C, 4–D	d) 1–D, 2–B, 3–A, 4–C	(c)
150	The strong interact		,		Answer: Gluons
	a) Photon	b) Gluons	c) W and Z bosons	d) Graviton	(b)