Test Booklet No	
-----------------	--

This booklet consists of 150 questions and pages.

RGUPET/2025/1004/109

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN MATHEMATICS

Full Marks	s: 150	Time: 3 Hour
Roll No.		
Day and Da	ate of Examination:	
Signature of	f Invigilator(s)	
Signature of	f Candidate	
C 11		

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	primarily relates	to	y launched by the Prime		development of a multilayered air and missile defence system
	a) a national renewable energy mission	b) a national digital currency mission	c) development of a multilayered air and missile defence system	d) a national mission to modernise Indian Railways	(c)
2	· ·	ional mission being imp	lemented by the Indian Ir	nstitute of	Drone technology
	a) Helicopters	b) Dairy technology	c) Drone technology	d) Artificial intelligence	c)
3	North East India' to connect	s first underwater tunne	el project, announced in 2	2024, is proposed	Numaligarh and Gohpur
	a) Dibrugarh and Dhemaji	b) Jorhat and Majuli	c) Numaligarh and Gohpur	d) Guwahati and North Guwahati	c)
4	A. Canada h B. Four play C. Sweden	was ranked first in Globa n Sindoor was Launched			(a)
	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D
5	A. Lip Butar B. Shri C P F C. India's ra	Radhakrishnan has been ank in the Human Develo	the new CEO of Intel in Nappointed as the Vice Propment Index 2025 released and network in the Wor	esident of India sed by UNDP is 99	(d)
_	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only
6	A. Palk Strait join B. The Radcliffe L C. The MacMoha	owing sentences is false is India and Sri Lanka line is between India and in Line separates India a ne is between Iran and A	d Bangladesh nd China		
	a) A, B	b) B, C	c) C, D	d) B, D	(d)
7		•	l full moon and new moo e earth in an elliptical orb	•	A and R are true but R doesnot explain A

	a) A and R are true and R correctly explains A.	b) A and R are trubut R does not explain A.	ue	c) A is true R is false	d) R is true but A is false	(b)
8	Right to equality	is a-				Fundamental right
	a) fundamental right	b) social right		c) cultural right	d) legal right	(a)
9	The author of the	book "Midnight's	Child	ren" is-		Salman Rushdie
	a) Shakespeare	b) Leo Tolostoy		c) Salman Rushdie	d) R K Narayan	(c)
10	Match the organ	izations with their l	heado	quarters:		
	A. UNESCO		1 N	ew York		
	B. WHO		2. Pa			
	C. UNICEF			eneva		
	D. IMF		4. W	/ashington D.C.		
	a) A-3, B-2, C- 4, D-1	b) A-2, B-3, C-1,	D-4	c) A-2, B-4, C-3, D-1	d) A-1, B-3, C-2, D-4	(b)
11	He said, "Happy I The correct indire	new year!" ect speech of the a	bove	is-		He wished me a happy new year.
	a) He said the new year was happy.	b) He wished me happy new year.	а	c) He said to me that happy new year.	d) I was wished a happy new year.	(b)
12	A. One of my frie B. I don't know n C. It is a two-hou	othing about her. r journey.		erday's programme.		
	a) A, B	b) B, C	•	c) A, C	d) C, D	(c)
13	"She drank the _ quantifier to fill i		was tl	here in the flask." The ap	propriate	little
	a) all	b) little		c) sour	d) few	(b)
14	The correct reord is- P. There is a great Q. There is a great R. Their great dis	eality/their/ theory dered meaningful s t theory and their i at disparity in their parity is in a theory eory is a reality and	enter reality theor and	nce with the above jumble y in disparity. ry and reality. reality there.	ed words/phrases	There is a great disparity in their theory and reality.
	a) P	b) Q		c) R	d) S	(b)
15	The correct matc	h of synonyms and	anto i. He	•		A-ii, B-iii, C-i, D-iv
	B. Generic			fective		
	C. Hinder			ndividual		
	D. Inception		iv. T	ermination		

	a) A-i, B-ii, C-iii, D-iv	b) A-iii, B-ii, C-iv, D-iii	c) A-iv, B-iii, C-i, D-ii	d) A-ii, B-iii, C-i, D-iv	(d)
16	The total number	er of squares in the follow	ring figure is:		22
	a) 24	b) 20	c) 22	d) 18	(c)
17	Fill in the blank i ELFY GLHX ILJW	n the following pattern. / MLNU			KLLV
	a) KLLV	b) KLMX	c) JLLV	d) JLMX	a)
18	_	I es Vineet as the only son I Vineet are related?	of the only brother of hi	s father's wife.	cousin
	a) brother	b) cousin	c) uncle	d) son-in-law	(b)
19	Which two numbers mathematically of	correct?	ged to make the given eq $\div 8 - 24 = 12$	uation	6, 8
	a) 6, 8	3 × 6 + 72	c) 3, 8	d) None	(a)
20	If BANKER is cod	ed as CAOKFR, then how	would LAWYER be coded	1?	MAXYFR
	a) LBWZES	b) LBWYFR	c) MAXYFR	d) MAXZES	c)
21	be eliminated ei		ery measurement, and su the sources of problems	-	
	a) Random errors	b) Systematic errors	c) Cascading errors	d) Perpetual errors	b
22	Hypothesis-drive	_	hypothesis. A hypothesi , and whose truth is being	s is a statement	
	a) A valid hypothesis is based on 'that exists'	b) A hypothesis is a positive conclusion	c) A hypothesis can never be tested	d) A valid hypothesis must be falsifiable	d
23		lowing statements that c	ould be considered as val	lid scientific	Answer
	disease. B. What is the be C. Macs are bett	est fertilizer to use to get er than PCs.	creases the odds of control		
	ט. בוומו S Aspirin	cures headaches faster	Man KCS ASPIRIA.		
	a) A, B	b) A, B, C	c) A, D	d) B, C	С
24	Relate the 'funct appropriate answ		nd 'comment' (B) and sel	ect the	Answer

		speed of sound in a	air at f	ixed pressure depends up	oon a	ir	
	temperature.						
	B. The control va	riahle is temnerati	ire ar	nd the response variable i	is sou	nd sneed	
	a) Functional	b) Functional	arc, ar	c) Functional		leither the	а
	relationship is	relationship is		relationship is correct		ctional	l u
	correct and the	incorrect but the		but the comment is		tionship is	
	comment is	comment is true		false for the		ect nor the	
	true for the	the relationship		relationship		nment is true	
	relationship						
25		design' and its 'me	ethod'				Answer
	Sampling Design	n	Met	hod			
	A. Deliberate		i. Sa	mple collected as			
			info	rmation received and sur	vey		
			prog	resses			
	B. Simple rando	m	ii. sa	mple drawn from a			
			hete	rogeneous group			
	C. Stratified			rposive selection of			
				icular units			
	D. Sequential			ery item in the population			
			has	an equal chance of inclus	ion		
	a) A-iii, B-iv, C- ii, D-i	b) A-ii, B-iv, C-iii,	D-i	c) A-i, B-iii, C-ii, D-iv	d) A D-i	-iii, B-ii, C-iv,	а
26	Number of obser	vations in a norma	al distr	ibution is 1000. How mar	ny ob	servations	Answer
	will be there bet	ween μ+1σ and μ-	1σ				
	a) 500	b) 680		c) 720	d) 9	50	b
27	Which of the foll	owing are reasons	for cit	ing a paper?			Answer
		definitions, terms in					
	B. provides upco	ming facts regardii	ng und	lergoing Research Questi	on.		
	B. provides upco C. to adopt part/	ming facts regardi full methodology i	ng und t adop	lergoing Research Questi ted for a certain task.	on.		
	B. provides upco C. to adopt part/ D. to refer to dat	ming facts regardii full methodology i a also used in Curr	ng und t adop	lergoing Research Questinted for a certain task.esearch.			
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C	ming facts regardii full methodology i a also used in Curr b) B, C, D	ng und t adop ent Re	lergoing Research Questinted for a certain task.esearch.	d) A	, B, D	С
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis	ming facts regardii full methodology i a also used in Curr b) B, C, D sh to meet publicat	ng und t adop ent Re tion ex	lergoing Research Questinted for a certain task. esearch. c) A, C, D spectations mostly resort	d) A	variety of	c Answer
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc	ming facts regardii full methodology i a also used in Curr b) B, C, D th to meet publicat crease their output	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc	ming facts regardii full methodology i a also used in Curr b) B, C, D sh to meet publicat	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e	ming facts regardii full methodology i a also used in Curr b) B, C, D th to meet publicat crease their output thical. Identify the	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi	ming facts regarding full methodology is a also used in Curre b) B, C, D is to meet publicate thical. Identify the	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe	ming facts regarding full methodology is a also used in Currob) B, C, D is to meet publicate thical. Identify the	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing	ming facts regarding full methodology in a also used in Currowsh to meet publicate the crease their output thical. Identify the periments	ng und t adop ent Re tion ex	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A	variety of	
28	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe	ming facts regardii full methodology i a also used in Curr b) B, C, D th to meet publicate crease their output thical. Identify the p eriments rencing	ng und t adop ent Re tion ex	lergoing Research Questined for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranhniques:	d) A to a king,	variety of which are	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C	ming facts regarding full methodology in a also used in Currowsh to meet publicate the action of the crease their output thical. Identify the property of the crease their output this also be actioned by A, B, D	ng und t adop ent Re tion ex : and c se tec	lergoing Research Questing ted for a certain task. esearch. c) A, C, D cpectations mostly resort rank up their citation ran	d) A to a king,	variety of	
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C	ming facts regardii full methodology i a also used in Curr b) B, C, D th to meet publicate crease their output thical. Identify the p eriments rencing	ng und t adop ent Re tion ex : and c se tec	lergoing Research Questined for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranhniques:	d) A to a king,	variety of which are	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C Match the refere	ming facts regarding full methodology is a also used in Curroth b) B, C, D is to meet publicate the crease their output thical. Identify the periments rencing b) A, B, D ences (APA 7 style).	ng und t adop ent Re tion ex : and c se tec	lergoing Research Questinated for a certain task. esearch. c) A, C, D epectations mostly resort rank up their citation ranhniques: c) B, C, D	d) A to a king,	variety of which are	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C Match the reference	ming facts regarding full methodology in a also used in Currollo B, C, D and the meet publicate the crease their output thical. Identify the proper iments are some control B, B, B, D and S, B, D and S, A, B, D and S, A, S, Steadwards, A, A,	ng und t adop ent Re tion ex and c se tec	lergoing Research Questinated for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranchniques: c) B, C, D	d) A to a viking,	variety of which are	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C Match the reference A. i. E Journal D. N	ming facts regarding full methodology in a also used in Currowship by B, C, D is to meet publicate the asset their output thical. Identify the property of the asset of the as	ng und t adop ent Re tion ex : and c se tech	lergoing Research Questived for a certain task. esearch. c) A, C, D expectations mostly resort rank up their citation ranhniques: c) B, C, D M., Siegelman, N., Rigoboton, D. L. (2022). Unpacki	d) A to a viking,	variety of which are	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to incompose to	ming facts regarding full methodology is a also used in Curron b) B, C, D is to meet publicate the crease their output thical. Identify the periments rencing b) A, B, D is ences (APA 7 style) is dwards, A. A., Steam, Rueckl, J. G., & ationship between	ng und t adop ent Re tion ex and c se tech : acy, L. Comp set for	lergoing Research Questinated for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranhniques: c) B, C, D M., Siegelman, N., Rigobotton, D. L. (2022). Unpacking variability and word rea	d) A to a viking,	which are A, C, D M., Kearns, e unique	Answer
228	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a)A, B, C Match the reference A. i. E Journal Article rela	ming facts regarding full methodology is a also used in Curron b) B, C, D is to meet publicate the crease their output thical. Identify the periments rencing b) A, B, D is ences (APA 7 style) is dwards, A. A., Steam, Rueckl, J. G., & ationship between relopment: Examing	t adoptent Restion extended and control of the cont	lergoing Research Questived for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranchniques: c) B, C, D M., Siegelman, N., Rigoboton, D. L. (2022). Unpacking variability and word reapord- and child-level predicted.	d) A to a which the second distance the second	M., Kearns, e unique	Answer
	B. provides upco C. to adopt part/ D. to refer to dat a) A, B, C Scholars who wis techniques to inc not considered e A. Gift authorshi B. Extensive expe C. Salami Slicing D. Extensive refe a) A, B, C Match the refere A. i. E Journal Article rela dev per	ming facts regarding full methodology is a also used in Curron b) B, C, D is to meet publicate the crease their output thical. Identify the periments rencing b) A, B, D is ences (APA 7 style) is dwards, A. A., Steam, Rueckl, J. G., & ationship between relopment: Examing	t adoptent Restand Composer to	lergoing Research Questinated for a certain task. esearch. c) A, C, D spectations mostly resort rank up their citation ranchniques: c) B, C, D M., Siegelman, N., Rigobotton, D. L. (2022). Unpacking variability and word reactional Psychology, 114	d) A to a which the second distance the second	M., Kearns, e unique	Answer

	B. Authored				az, A., & Rousman					
	Book				onally focused cou ttps://doi.org/10.	-				
							<u> </u>			
	C.		-	. •	L., & Drozda, N. (2					
	Webpage		collaboration to promote mind–body health. In C. Maykel & M. A. Bray (Eds.), <i>Promoting mind–body health in schools: Interventions for</i>							
		-	mental health professionals (pp. 11–26). American Psychological							
			ciation.	/10 1007/004						
		nttp	s://doi.c	org/10.1037/000	<u> 00157-002</u>					
	D. Edited	iv. Ta	aras, Z. (2024, May 30).	Situational irony (can be f	unny, tragic or			
	Book			ng. howstuffwo						
	Chapter			rtainment.hows	stuffworks.com/a	rts/litera	ature/situational-			
	a) A-i, B-ii, C		y.htm b) A-ii I	3-iii, C-iv, D-i	c) A-iii, B-ii, C-i, [)_iv	d) A-i, B-ii, C-iii,	а		
	D-iii				, , ,	J 1V	D-iv	ď		
30		of the		g refers to posit			IN.			
	a)		b)		c)		d)	С		
	/	\setminus	,	\bigcap						
	Mean - Median - N	Mode	Means	: Median=Mode	Mode Median	X Mean	Mean Median Mode			
31	How much i	s the	degree c	of freedom for t	ne following data	table?		Answer		
	S. No.		X_{i}	Hypothesised mea	$D_i = \left(X_i - \mu_{H_0}\right)$	D_i	2			
				$m_{H_0} = 578 \text{ kg}.$						
	5 6		572 57 8	578 578	−6 0	36 0				
	7		570	578	-8	64				
	8		572 596	578 578	-6 18	36 324				
	10		544	578	-34	1156				
	n=10				$\sum D_i = -60$ \sum	$D_i^2 = 1816$				
	a) 8		b) 9		c) 10		d) 18	b		
32	-	Null l		sis for the given				Answer		
	S. No.		X_{i}	Hypothesised mean $m_{H_c} = 578$ kg.	$D_i = \left(X_i - \mu_{H_0}\right)$	D_i^2				
	5		572	578	-6	36				
	6		57 8	578 578	0	0				
	7 8		570 572	578 578	−8 −6	64 36				
	9		596	578	18	324				
	10 n=10		544	578	-34 \(\Sigma\) = -60 \(\Sigma\) \(\Sigma\)	1156 2 = 1816				
	n=10									
	a) μ <i>н</i> ₀ = 578	skg.	b) μ <i>H</i> ₀ :	≠ 578kg.	c) $\mu H_0 = -578 \text{kg}$	ζ.	d) μ <i>μ</i> ₀ = ± 578kg.	а		
33	What will be	- sum	of the d	eviations of obs	ervations from th	e regres		Answer		
- 55	a) -∞	Jani	b) 0	2.140.013 01 003	c) +∞		d) undefined	b		
34	Derive from	the fo		diagram	<u>, </u>		,	Answer		

							1
	Assertion: In this level a) Assertion is true and justification explains the		ed hypot	c) Assertion is transfering in the sample in	: 90 per ue is	d) Assertion is true and justification for the Assertion is	d
35	Assertion		الديداء	 od with appropriat	a ala (- ''	incorrect	Answer
	Statistical method A. Correlation B. Polynomial re C. ANOVA D. Chi square		ii. Mor charac iii. Test	r 2, 3, 4, e than two populat teristics t of homogeneity uires only two varia		same	
	a) A-i, B-ii, C-iii,	b) A-iv, B-i, C-i	ii, D-iii	c) A-iv, B-ii, C-i, [)-iii	d) A-iii, B-i, C-ii,	b
	D-iv					D-iv	
36	B. Rate of C. Increase	of Interaction h Chemical React the rate of rea rbon chain inso	olding a tion action	tom i Kinetics ii Bond iii Lipid			Answer
	a) A(i), B(ii), C(iii), D(iv)	b) A(ii), B(i C(iv), D(iii)),	c) A(iii), B(ii), C(i), D(iv)	d) A(ii), B(iii), C(i), D(iv)	(b)
37			e velocit	ry of a particle is ma	aximum	at:	Answer
	a) Mean position	b) Extreme position	?	c) Halfway between mean and extreme	d) At a	all positions	(a)
38	In a double-slit of happens to the fr			tance between slit screen?	s is do	ubled, what	Answer
	a) Fringe spacing halves	a) Fri spacing do	nge ubles	c)Fringe spacing remains the same	d)Frin quadr	ge spacing uples	(a)
39	A block slides de statements is tru		nless inc	clined plane. Which	ch of th	e following	Answer

	a) Mechanical	b) Potential	c) Kinetic energy	d)Acceleration is zero	(b)
	energy is not	energy	decreases		
	conserved	decreases, kinetic energy			
		increases			
40	Which of the follo		photon in a vacuu	m?	Answer
	a) It has mass but	b) It has energy	c) It has rest	d) It can be accelerated	(b)
	no energy	but no rest mass	mass and energy	by a force	
41	Which of the follow	 ing is diamagnetic?			Answer
	a) CO ₂	b) O ₂	c) NO	d) O ₂ ⁻	(a)
42	Match the following	; ligands with their o	denticity:		Answer
	A. NH ₃		Quadridentate		
	B. EDTA		Monodentate		
	C. Oxalate		. Hexadentate		
	D. Porphyrin		Bidentate		
	1 7				
	a) A-ii, B-iii, C-iv, D-i	b) A-ii, B-iii, C-i, D-iv	c) A-iv, B-iii, C-ii, D-i.	d) A-ii, B-i, C-iv, D-iii	(a)
43	In which of the follo			onding present?	Answer
		0			
	a) NaCl	b) ZnO	c) Al ₂ O ₃	d) Cr ₂ Cl ₆	(d)
44	A solution contains the osmotic pressur		 latile solute in 1 L o	 of water at 298 K. Calculate	Answer
	a) 2.44 atm	b) 1.33 atm	c) 0.22 atm	d) 0.11 atm	(a)
45	According to Henry'		· '	1 -	Answer
	a) Independent of	b) Directly	c) Inversely	d) Exponential with	(b)
	pressure.	proportional to pressure.	proportional to pressure.	pressure.	
46	Relate the statemer A: Assertion–SSDs a	nts:	1.	1	
	B: Justification–Beca			spinning disks.	Answer
	a) Both A and B are	b) Both A and B a	are c) A is true, bu	it B is d) A is false, but B	
		true but Dis NO	T folco	ic true	
	true, and B is the correct explanation	true, but B is NO the correct	T false	is true	(a)

47	Match the pairs:						
	A. Machine Learnin	g	i Enables i	i Enables machines to understand and process			
			human	language			
	B. Natural Language	9	ii Uses dat	ta to learn and improv	e predictions	Answer	
	Processing (NLP)		automa	atically		Allswei	
	C. Computer Vision		iii Analyze	s and interprets visua	l data like		
			images	and videos			
	D. Expert Systems		iv Mimics	human decision-maki	ng using rules		
			and kn	owledge base			
	a) A – iv, B – i, C –	b) A – iv,	B – iii, C –	c) A – ii, B – i, C –	d) A – iii, B – i, C –	(c)	
	1			•	iv, D – ii.	(6)	
48	Which programming	language	is widely use	ed for AI and ML deve	lopment?	Answer	
	a) Python	b) JavaSc	ript	c) C#	d) HTML	(a)	
49	Which of the following	ng stateme	ent is true:			Answer	
	a) A byte is made	b) ROM i	s volatile	c) A compiler	d) A firewall is	(d)	
	up of 16 bits.	memory	that loses	translates high-	used to protect a		
		data whe	en power	level code into	computer networ	k	
		is switch	ed off.	machine code line	from unauthorize	d	
				by line.	access.		
50	What is a network of	networks	called?			Answer	
	a) Intranet	b) Intern	et	c) WAN	d) LAN	(b)	

51	Newton-Raphson	iteration formula f	For finding $\sqrt[3]{c}$, whe	ere $c > 0$ is	
	a) x_{n+1}	b) x_{n+1}	$c) x_{n+1}$	$d) x_{n+1}$	(c)
	$2x_n^3 + \sqrt[3]{c}$	$3x_n^3 - \sqrt[3]{c}$	$2x_n^3 + c$	$2x_n^3-c$. ,
	$=\frac{x^2}{2x_n^2}$	$=\frac{3x_n^3-\sqrt[3]{c}}{3x_n^2}$	$=\frac{1}{3x_n^2}$	$=\frac{1}{3x_n^2}$	
52		-third rule the curv			
	a) circle	b) parabola	c) hyperbola	d) None of	(b)
				these	
53	The value of $\Delta^3 x^2$	x^2 at $x = 0$ (where x^2	is forward differe	ence operator)	
	a) 0	b) 0.5	c) 1.5	d) None of	(a)
				these	
54	Which of the follo				
	a) $E = \Delta + 1$	b) $E\Delta = \Delta$	c) $E\Delta \neq \Delta E$	d) $E^{-1} = 1 - \nabla$	(c)
55	A rigid body mov	ing freely in space	has degrees of free	edom	
		b) 9	c) 4	d) 3	(a)
56	Backward Euler r	method for solving	differential equation	on $\frac{dy}{dx} = f(x, y)$ is $d) y_{n+1} = (1 + y) f(x)$	
	a) $y_{n+1} = y_n +$	b) $y_{n+1} = y_n +$	c) $y_{n+1} =$	d) $y_{n+1} = (1 +$	(b)
	$hf(x_n, y_n)$	$hf(x_{n+1}, y_{n+1})$	$y_{n-1} +$	$h)f(x_{n+1},y_{n+1})$	
			$2hf(x_n, y_n)$		
57		the convergence o	f the Newton Raph	son method to a	
	root α is		T	T	
	$f'(\alpha)$	$b)\frac{f'(\alpha)}{f''(\alpha)} < 1$	$f'(\alpha)$	$\int f'(\alpha) < 1$	(c)
	$\frac{a}{2f''(\alpha)} \leq 1$	$f''(\alpha)$	$\frac{c}{2f''(\alpha)}$	$\frac{u}{f''(\alpha)} > 1$	

F0	T.14:C414.4		:41 T	P-1		1
58	Identify the states				0.1	
			of solving	g the equation $f(x)$	= 0 is a second-	
	order iteration pro					
	Gauss-Seidel me					
	is an iterative me					
				od of order p is ε =		
	Simpson's one-th	ird rule o	f integrati	ion is two points cl	osed type	(D)
	Newton-Cotes' q	uadrature	formula.			
	a) 1–True, 2–	b) 1–Tr	ue, 2–	c) 1–True, 2–	d) 1–True, 2–	
	False, 3–False,	True, 3-		False, 3–True,	True, 3–False,	
	4–False	4–True	,	4–False	4–False	
59				ntegration rules wi		
	respect of their de	egrees of	precision	by using the given	codes:	
	Tide			T *-4 TT		
	List-I	1-1 1		List-II		
	1. Trapezoi			1		
		's one-th		2		
			ighth rule			(4)
	4. Weddle'			7		(A)
	a) 1–(i), 2–(ii),			c) 1–(iii), 2–		
	3–(iii), 4–(iv)	3–(iv),	4–(i)	(iv), 3–(i), 4–(ii)	3–(ii), 4–(iii)	
	M-4-1-4144	41	1- 6 1:		: 4	
60	Match the iterativ	e metnoc	is for line	ar systems with the	ar type:	
	ist-I			ist-II		
	Jacobi method			Best for symmetr	ic positive	
	Jacobi method			definite systems	ie positive	
	Gauss–Seidel m	ethod		Iterative, Slow		
	Successive Over		ion	.Iterative, accelera	atad aanyanaanaa	
	(SOR)	-Kelaxati	IOII	interative, accelera	ned convergence	(B)
	Conjugate gradi	ent metho	nd	. Iterative, faster th	an Iacohi	(B)
i	1 0 1 1 (111 7 (1111)	I b) I-(11), <i>2</i> –(1V),	IC) I-(111), 2-	d) 1–(iv), 2–(i),	
	a) 1–(ii), 2–(iii),			(:-) 2 (:) 4 (::)	2 (::) 4 (:::)	
		3–(iii),		c) 1–(iii), 2– (iv), 3–(i), 4–(ii)	3–(ii), 4–(iii)	
61		3–(iii),		(iv), 3–(i), 4–(ii)	3–(ii), 4–(iii)	
61	3–(iv), 4–(i) Match the follow	3–(iii),	4-(i)	(iv), 3–(i), 4–(ii)	3-(ii), 4-(iii)	
61	3–(iv), 4–(i) Match the follow List-I	3–(iii), 4	4-(i) List-II		3-(ii), 4-(iii)	
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso	3–(iii), 4	List-II Integrati	on	3-(ii), 4-(iii)	
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta	3–(iii), 4	List-II Integrati Root fine	on ding		
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta Gauss-seidel	3–(iii), 4	List-II Integrati Root fine	on ding Differential Equa	tions	
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta	3–(iii), 4	List-II Integrati Root fine	on ding	tions	
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta Gauss-seidel Simpson's Rule	3–(iii), and ing:	List-II Integrati Root fine Ordinary Solution	on ding Differential Equa of system of Linea	tions ar Equations	(A)
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta Gauss-seidel Simpson's Rule a) 1–(ii), 2–(iii),	3–(iii), and ing:	List-II Integrati Root fine Ordinary Solution 0, 2–(iv),	on ding Differential Equa of system of Linea	tions ar Equations d) 1–(iv), 2–(i),	(A)
61	3–(iv), 4–(i) Match the follow List-I Newton-Raphso Runge-kutta Gauss-seidel Simpson's Rule	3–(iii), and ing:	List-II Integrati Root fine Ordinary Solution 0, 2–(iv),	on ding Differential Equa of system of Linea	tions ar Equations	(A)

62	Match the follow	ing:			
	List-I				
	1. the moment	of inertia of a uni	form rod about a	i. $ML^2/12$	
	perpendicula				
	2. Moment of i	nertia of hoop abo	out it's central axis	ii. <i>MR</i> ²	
		•			
		of inertia of a rect		iii. $Ml^2/12$	
		parallel to an edge	e and passing		
	through the o				
			form circular plate	iv. $MR^2/2$	
	about its axis	8			(C)
	a) 1–(ii), 2–(iii),	b) 1–(ii), 2–(iv),	c) 1–(i), 2–(ii),	d) 1–(iv), 2–(i),	
	3–(iv), 4–(i)	3–(i), 4–(iii)	3–(iii), 4–(iv)	3–(ii), 4–(iii)	
63	Match the following			_ (/, ' (111/	(D)
	List-I	<i>6</i>	List-II		
	1. holonomic co	onstraint		ependent of time	
	2. non-holonon	nic constraint	ii. Cannot be exp	ressed as exact	
			relation betwe		
	3. rheonomous	constraints	iii. Expressible in	the form	
			$f(q_1, q_2, q_3,$	q_n , t) = 0	
	4. scleronomou	s constraints	iv. Explicitly dep	ends on time	
	(A) 1–(ii), 2–	(B) 1–(ii), 2–	(C) 1–(i), 2–(ii),		
	(iii), 3–(iv), 4–	(iv), 3–(i), 4–	3–(iii), 4–(iv)	(ii), 3–(iv), 4–(i)	
	(i)	(iii)			
64	Consider the state		1. 1 1	C .1	
			I to the total energy		
			rder differential equerve Hamilton's equ		
			logous to commutat		(A)
	mechanics.	as play a fole alla	logous to commutat	ors in quantum	(A)
		ct option in the se	quence of statement	s No. 1, 2, 3, 4	
	a) False, True,	b) True, True,	c) False, False,	d) False, False,	
	True, True	True, True	True, False	False, True	
65			lways converges to		(A)
	equation.				
	` '		rmediate Value The		
	a) Both A and R	b) Both A and R	· ·	d) A is false,	
	are true, and R	are true, but R	R is false.	but R is true.	
	is the correct	is not the			
	explanation of	correct			
	A.	explanation of			
66	Assertion (A). To	A. runcation error de	creases when step si	ize h decreases	
			s due to neglecting l		
	terms in Taylor se			5	
	a) Both A and R	b) Both A and R	c) A is true, but	d) A is false,	(D)
	are true, but R	are true, and R	R is false.	but R is true.	
	is not the	is the correct			

caylanation of A. A. A. A. Assertion (A): LU decomposition is a direct method for solving a system of linear equations. Reason (R): LU decomposition reduces the system to lower and upper triangular systems which can be solved efficiently. a) A true, R false R not explanation B not explanation C) A and R true, R explains A rue explanation R explains A rue explanation Cassertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R not explanation C) A true, R false R not explanation B) A and R true, R cxplains A Cassertion (A): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R not explanation C) A true, R false R of the inner product $f(t)$, $f(t$		correct	explanation of			
A. Assertion (A): LU decomposition is a direct method for solving a system of linear equations. Reason (R): LU decomposition reduces the system to lower and upper triangular systems which can be solved efficiently. a) A true, R b) A and R true, R explains A explains A explanation 68 Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R c) A true, R false d) A and R true, R explains A explanation 69 Let $P(t)$ be the inner product space of all real polynomials of degree at most two equipped with the inner product $< f(t), g(t) > = \int_0^1 f(t)g(t)dt, \forall f(t), g(t) \in P(t)$. Then the set $\{1,t,t^2\}$ is a) orthogonal b) orthonormal c) orthonormal c) orthogonal but not orthogonal. orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt}$ sin mx , where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. a 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy. Riemann equations. B. If a single valued function satisfies Cauchy. Riemann equations then it is analytic. a) Both A and B b) A is false but c) A is true but B is true. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = y$ has no solution if a) $\gamma + 2\beta - 5\alpha = 0$ $5\alpha = 0$			_			
Assertion (A): LU decomposition is a direct method for solving a system of linear equations. Reason (R): LU decomposition reduces the system to lower and upper triangular systems which can be solved efficiently. a) A true, R b) A and R true, explanation C) A and R true, and true C) A and R true, and true C) A and R true, and true C) A system of each of the explanation C) A system of each of the explanation C) A distance of a central force is conserved. a) A false, R b) A and R true, and a particle moves in the influence of a central force is conserved. a) A false, R b) A and R true, and a particle moves in the influence of a central force is conserved. a) A false, R b) A and R true, R c) A true, R false d) A and R true, R explains A explanation expl		-	A.			
system of linear equations. Reason (R): LU decomposition reduces the system to lower and upper triangular systems which can be solved efficiently. a) A true, R b) A and R true, R c) A and R true, R explains A true explanation 8 Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R not explanation c) A true, R false d) A and R true, R not explanation c) A true, R false d) A and R true, R not explanation c) A true, R false d) A and R true, R not explanation d) A true, R explains A explains A explanation d) A true, R explains A explanation d) A true, R explains A explains A explanation d) A true, R explains A explains A explanation d) A true, R explains A explains A explanation d) A true, R explains A explai	<i>C</i> 7		[] dagammagitian is	a dina at matha difa		(7)
Reason (R): LU decomposition reduces the system to lower and upper triangular systems which can be solved efficiently.a) A true, R falseb) A and R true, R R not explanationc) A and R true, R R explains A trued) A false, R true68Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved.a) A false, R R not explanationc) A true, R false R explains Ad) A and R true, R explains A69Let $P(t)$ be the inner product space of all real polynomials of degree at most two equipped with the inner product $< f(t), g(t) > =$ $\int_0^1 f(t)g(t)dt, \forall f(t), g(t) \in P(t)$. Then the set $\{1,t,t^2\}$ isa) orthogonal but not orthonormald) not orthogonal.70The partial differential equation corresponding to the function $z =$ $Ae^{mt} \sin mx,$ where A and m are constants, isa) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. aa71Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic.a) B bit false.d) Neither A nor B is true.c72The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution ifa) $\gamma + 2\beta - \beta$ $\beta = 0$ b) $\gamma + 2\beta - \beta$ $\beta = 0$ c) $\beta = 2\beta + \gamma$ $\beta = 0$ a) $\beta = \beta$ $\beta = $	67		()			
triangular systems which can be solved efficiently. a) A true, R false B) A and R true, C) A and R true, R explains A R core explanation 8 Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R R b) A and R true, R R cot a particle moving under a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R R b) A and R true, R R cot a particle moving under a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R R b) A and R true, C) A true, R false divided for the constants of degree at most two equipped with the inner product $< f(t), g(t) > = f(t), g(t) > = f(t), f(t)g(t)dt, V + f(t), g(t) \in P(t)$. Then the set $\{1,t,t^2\}$ is a) orthogonal b) orthonormal c) orthogonal d) onthogonal orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ d) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$. 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but b) is false. c) A is true but b) Noeither A c are true. B) is true. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = y$ has no solution if a) $y + 2\beta - b$ b) $y + 2\beta - c$ c) $5\alpha = 2\beta + y$ d) $5\alpha = 2\beta - c$ c) $5\alpha = 0$ 73 Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- iii. iii. Dimension C. Kernel of a transformation iii. iii. Dimension C. Kernel of a transformation iii. iii. Dimension C. Gallowing in a vector space. A.		•	•	41 4 4 1	. 1	
a) A true, R false			-	-	lower and upper	
false R not explains A true explains A Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R false R explains A explanation 69 Let $P(t)$ be the inner product space of all real polynomials of degree at most two equipped with the inner product $< f(t), g(t) > = \int_0^1 f(t)g(t)dt$, $\forall f(t), g(t) \in P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal d) not orthogonal. orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. a 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but B is true. B is false. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = y$ has no solution if a) $\gamma + 2\beta - 5\alpha = 0$ 73 Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation ii. Nullity a) A-i, B-ii, C- ii. b) A-iii, B-ii, C- iii. iii. Nullity a) Asswer				•		
Explanation Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R not explanation C. A true, R false d) A and R true, R explains A R not explanation C. A true, R false d) A and R true, R explains A R not explanation C. A true, R false d) A and R true, R explains A R not explanation C. A true, R false d) A and R true, R explains A R not explanation C. A true, R false d) A and R true, R explains A R not explanation A not ex						
68 Assertion (A): The areal velocity remains constant when a particle moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R cylains A cylain		false		R explains A	true	
moves in the influence of a central force. Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R b) A and R true, R not explanation c) A true, R false d) A and R true, R explains A explanation c) A true, R false d) A and R true, R explains A explanation c) A true, R false d) A and R true, R explains A explanation d) A interpretation d) A inte			_			
Reason (R): The angular momentum of a particle moving under a central force is conserved. a) A false, R true b) A and R true, R not explanation c)A true, R false R explains A 69 Let $P(t)$ be the inner product space of all real polynomials of degree at most two equipped with the inner product $< f(t), g(t) > = \int_0^1 f(t)g(t)dt$, $∀ f(t), g(t) ∈ P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal but not orthonormal d) not orthogonal. 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t^2} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$ a) 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but bis false. B is false. b) A is false but c) A is true but d) Neither A nor B is true. 72 c The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - 5\alpha \neq 0$ b) $\gamma + 2\beta - 5\alpha \neq 0$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$ A datch the following in a vector space. A. Basis B. Range space of transformation iii. Nullity a) A-i, B-ii, C- iiii. ii. iii. iii. iii. iii. iii. iii	68	Assertion (A): The second of	he areal velocity re	mains constant who	en a particle	(D)
central force is conserved. a) A false, R		moves in the influ	ience of a central for	orce.		
a) A false, R true R not explanation C) A true, R false d A and R true, R explains A Explains A C) A true, R false d A and R true, R explains A Explains A Explains A C) A true, R false d A and R true, R explains A		Reason (R): The	angular momentur	n of a particle mov	ing under a	
true R not explanation R explains A explains A learning product space of all real polynomials of degree at most two equipped with the inner product $\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$, $\forall f(t), g(t) \in P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal but not orthogonal. orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but c) A is true but are true. B is true. C The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta$ b) $\gamma + 2\beta - \beta$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \beta$ and $\beta = \beta$ for $\beta = \beta$ f		central force is co	onserved.	_	-	
true R not explanation R explains A explains A learning product space of all real polynomials of degree at most two equipped with the inner product $\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$, $\forall f(t), g(t) \in P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal but not orthogonal. orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but c) A is true but are true. B is true. C The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta$ b) $\gamma + 2\beta - \beta$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \beta$ and $\beta = \beta$ for $\beta = \beta$ f		a) A false, R	b) A and R true,	c)A true, R false	d) A and R true,	
explanation constants c		*				
69 Let $P(t)$ be the inner product space of all real polynomials of degree at most two equipped with the inner product $< f(t), g(t) > = \int_0^1 f(t)g(t)dt$, $\forall f(t), g(t) \in P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal but not orthogonal. orthonormal 70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but c) A is true but are true. B is true. B is false. nor B is true. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta$ b) $\gamma + 2\beta - \beta$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$ a $\gamma + \beta$ d) $\gamma +$					F	
most two equipped with the inner product $\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$, $\forall f(t), g(t) \in P(t)$. Then the set $\{1, t, t^2\}$ is a) orthogonal b) orthonormal c) orthogonal but not orthogonal. The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B bis true. B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - 5\alpha \neq 0$ b) $\gamma + 2\beta - 5\alpha = 0$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - 5\alpha \neq 0$ for $\beta = \beta$ in Rank B. Range space of transformation ii. Dimension C. Kernel of a transformation iii. Dimension C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- ii iii. iii. iii. iii. iii. iii. answer	69	Let $P(t)$ be the in		of all real polynom	ials of degree at	
a) orthogonal b) orthonormal c) orthogonal but not orthogonal. The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - 5\alpha = 0$ Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation B. A-i, B-ii, C- i ii iii iii. Nullity a) A-i, B-ii, C- iii iii. Answer				,		
but not orthogonal. 70 The partial differential equation corresponding to the function $z = Ae^{mt}$ sin mx , where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. a 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but bis false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $		$\int_0^1 f(t)g(t)dt$,	$f(t), g(t) \in P(t)$). Then the set $\{1, t\}$	$\{t, t^2\}$ is	
70 The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but d) Neither A nor B is true. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - 5\alpha \neq 0$ b) $\gamma + 2\beta - 5\alpha = 0$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$. 73 Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C-iii iii. Nullity 74 Clairaut's form of partial differential equation is answer		a) orthogonal	b) orthonormal	c) orthogonal	d) not	d
The partial differential equation corresponding to the function $z = Ae^{mt} \sin mx$, where A and m are constants, is a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy-Riemann equations then it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but B is false. C) A is true but B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + \beta + \gamma + \beta + \beta + \beta + \gamma + \beta + \beta + \beta +$				but not	orthogonal.	
$Ae^{mt} \sin mx, \text{ where } A \text{ and } m \text{ are constants, is}$ $a) \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0 b) \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0 c) \frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0 d) \frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0. a$ $71 \text{Consider the following statements:} A. \text{ If a function is analytic then it satisfies Cauchy Riemann equations.} B. \text{ If a single valued function satisfies Cauchy- Riemann equations then it is analytic.}$ $a) \text{ Both A and B} b) \text{ A is false but} c) \text{ A is true but} d) \text{ Neither A} c \text{nor B is true.}$ $22 \text{The system of equations } x + 2y - 3z = \alpha, \ 2x + 6y - 11z = \beta, \ x - 2y + 7z = \gamma \text{ has no solution if}}$ $a) \gamma + 2\beta - b) \gamma + 2\beta - c) 5\alpha = 2\beta + \gamma d) 5\alpha = 2\beta - \gamma$ $5\alpha \neq 0 5\alpha = 0 \gamma.$ $3 \text{Match the following in a vector space.}$ $A. \text{ Basis} i. \text{ Rank}$ $B. \text{ Range space of transformation} ii. \text{ Dimension}$ $C. \text{ Kernel of a transformation} iii. \text{ Nullity}$ $a) \text{ A-i, B-ii, C-} b) \text{ A-iii, B-ii, C-} iii. \text{ Nullity}$ $a) \text{ A-i, B-ii, C-} iii. \text{ Nullity}$ $a) \text{ Clairaut's form of partial differential equation is}$				orthonormal		
$Ae^{mt} \sin mx, \text{ where } A \text{ and } m \text{ are constants, is}$ $a) \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0 b) \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0 c) \frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0 d) \frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0. a$ $71 \text{Consider the following statements:} A. \text{ If a function is analytic then it satisfies Cauchy Riemann equations.} B. \text{ If a single valued function satisfies Cauchy- Riemann equations then it is analytic.}$ $a) \text{ Both A and B} b) \text{ A is false but} c) \text{ A is true but} d) \text{ Neither A} c \text{nor B is true.}$ $22 \text{The system of equations } x + 2y - 3z = \alpha, \ 2x + 6y - 11z = \beta, \ x - 2y + 7z = \gamma \text{ has no solution if}}$ $a) \gamma + 2\beta - b) \gamma + 2\beta - c) 5\alpha = 2\beta + \gamma d) 5\alpha = 2\beta - \gamma$ $5\alpha \neq 0 5\alpha = 0 \gamma.$ $3 \text{Match the following in a vector space.}$ $A. \text{ Basis} i. \text{ Rank}$ $B. \text{ Range space of transformation} ii. \text{ Dimension}$ $C. \text{ Kernel of a transformation} iii. \text{ Nullity}$ $a) \text{ A-i, B-ii, C-} b) \text{ A-iii, B-ii, C-} iii. \text{ Nullity}$ $a) \text{ A-i, B-ii, C-} iii. \text{ Nullity}$ $a) \text{ Clairaut's form of partial differential equation is}$	70	The partial differen	ential equation corr	esponding to the fu	z = 1	
a) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial t^2} = 0$ c) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial t} = 0$ d) $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial t^2} = 0$. a 71 Consider the following statements: A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but d) Neither A nor B is true. 72 The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $			*			
 Consider the following statements:					1 2 22	
 Consider the following statements:		a) $\frac{\partial^2 z}{\partial z^2} + \frac{\partial^2 z}{\partial z^2} = 0$	b) $\frac{\partial^2 z}{\partial z^2} - \frac{\partial^2 z}{\partial z^2} = 0$	c) $\frac{\partial^2 z}{\partial z^2} - \frac{\partial z}{\partial z} = 0$	d) $\frac{\partial z}{\partial z} + \frac{\partial^2 z}{\partial z^2} = 0$.	a
A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but B is true but B is true. C) A is true but D is true. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $		$\int \partial x^2 + \partial t^2$	$\int dx^2 dt^2$	$\int dx^2 dt$	$\int \partial x = \partial t^2$	
A. If a function is analytic then it satisfies Cauchy Riemann equations. B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but B is true but B is true. C) A is true but D is true. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $	71	Consider the follo	owing statements:			
B. If a single valued function satisfies Cauchy- Riemann equations then it is analytic. a) Both A and B b) A is false but c) A is true but are true. B is true. C A is true but B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $				tisfies Cauchy Rier	nann equations.	
it is analytic. a) Both A and B b) A is false but are true. B is true. C) A is true but B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $			•	-	_	
a) Both A and B are true. B is true. C) A is true but B is false. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - \beta + $		•	ou runonon sunsin	os caucity Telefilar	in equations then	
are true. B is true. B is false. nor B is true. The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - b$ b) $\gamma + 2\beta - c$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$. Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- ii iii. Nullity 74 Clairaut's form of partial differential equation is answer		·	b) Δ is false but	c) A is true but	d) Neither A	C
The system of equations $x + 2y - 3z = \alpha$, $2x + 6y - 11z = \beta$, $x - 2y + 7z = \gamma$ has no solution if a) $\gamma + 2\beta - b$ $\gamma + 2\beta - c$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$. Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- ii iii. Nullity 74 Clairaut's form of partial differential equation is answer		•			,	
$2y + 7z = \gamma \text{ has no solution if}$ $a) \gamma + 2\beta - b) \gamma + 2\beta - c) 5\alpha = 2\beta + \gamma \text{ d) } 5\alpha = 2\beta - \alpha$ $5\alpha \neq 0$ $5\alpha = 0$ $A. Basis i. Rank B. Range space of transformation ii. Dimension C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- b) A-iii, B-ii, C- c) A-iii, B-i, C- diii 74 Clairaut's form of partial differential equation is answer$		are true.	D is true.	D is faise.	nor bas true.	
a) $\gamma + 2\beta - 5\alpha \neq 0$ b) $\gamma + 2\beta - 5\alpha = 0$ c) $5\alpha = 2\beta + \gamma$ d) $5\alpha = 2\beta - \gamma$. Match the following in a vector space. A. Basis i. Rank B. Range space of transformation ii. Dimension C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- b) A-iii, B-ii, C- c) A-iii, B-i, C- iii iii 74 Clairaut's form of partial differential equation is answer	72	The system of equ	uations $x + 2y - 3$	$3z = \alpha, \ 2x + 6y -$	$-11z = \beta$, $x -$	
		$2y + 7z = \gamma$ has	no solution if			
		α) $\gamma \perp 2R$ —	b) 1/ ± 2R =	α) $5\alpha - 2\beta \pm \gamma$	$d) 5\alpha - 2\beta -$	2
73 Match the following in a vector space. A. Basis B. Range space of transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- iii b) A-iii, B-ii, C- iii c) A-iii, B-i, C- iii d The control of transformation answer The control of transformation iii. Nullity a) A-i, B-ii, C- iii a) A-iii, B-i, C- iii answer		a = 7 + 2p - 6	0) γ + 2p - Γα - 0	$C = 2p + \gamma$		a
A. Basis B. Range space of transformation C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- iii b) A-iii, B-ii, C- iii c) A-iii, B-i, C- iii d) A-ii, B-i, C- iii 74 Clairaut's form of partial differential equation is answer					γ.	
B. Range space of transformation ii. Dimension C. Kernel of a transformation iii. Nullity a) A-i, B-ii, C- b) A-iii, B-ii, C- c) A-iii, B-i, C- d) A-ii, B-i, C- iii 74 Clairaut's form of partial differential equation is answer	73	Match the follow	ing in a vector spac	ce.		
C. Kernel of a transformation a) A-i, B-ii, C- iii b) A-iii, B-ii, C- c) A-iii, B-i, C- iii 74 Clairaut's form of partial differential equation is iii. Nullity c) d) A-ii, B-i, C- iii answer		A. Basis		i. Rank		
C. Kernel of a transformation a) A-i, B-ii, C- iii b) A-iii, B-ii, C- c) A-iii, B-i, C- iii 74 Clairaut's form of partial differential equation is iii. Nullity c) d) A-ii, B-i, C- iii answer		B. Range space	of transformation	ii. Dimension		
a) A-i, B-ii, C- b) A-iii, B-ii, C- c) A-iii, B-i, C- d) A-ii, B-i, C- iii 74 Clairaut's form of partial differential equation is answer		<u> </u>				
iii iii iii iii iii answer 74 Clairaut's form of partial differential equation is answer					d) A-ii B-i C-	d
74 Clairaut's form of partial differential equation is answer					l	u
•					111	
	74	Clairaut's form of	f partial differentia	l equation is		answer
$ \begin{vmatrix} a \\ f\left(x, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = \begin{vmatrix} b \\ f\left(x, \frac{\partial z}{\partial x}\right) = \\ g\left(y, \frac{\partial z}{\partial y}\right) \end{vmatrix} = \begin{vmatrix} c \\ f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = \\ 0 \end{vmatrix} d) z = x \frac{\partial z}{\partial x} + \\ y \frac{\partial z}{\partial y} + \\ f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right). $						
$ \begin{vmatrix} f\left(x, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = \\ 0 \end{vmatrix} g\left(y, \frac{\partial z}{\partial y}\right) \qquad 0 \end{vmatrix} 0 \begin{vmatrix} y \frac{\partial z}{\partial y} + \\ f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right). $		a)	$\int b f\left(x, \frac{\partial z}{\partial x}\right) =$	c) $f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial x}\right) =$	d) $z = x \frac{\partial z}{\partial z} +$	d
$\begin{bmatrix} y & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial y} \\ 0 & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial y} \end{bmatrix} $		$f\left(x,\frac{\partial z}{\partial x},\frac{\partial z}{\partial z}\right) =$	$\int \frac{\partial x}{\partial z}$	$\int \int \partial x' \partial y'$	∂z	
$f\left(\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}\right).$		$\frac{\partial}{\partial x} \frac{\partial}{\partial y}$	$g\left(y,\frac{1}{\partial y}\right)$	U	$y \frac{1}{\partial y} +$	
$\int \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)$		U			$f\left(\frac{\partial z}{\partial z} \frac{\partial z}{\partial z}\right)$	
					$\int \left(\partial x' \overline{\partial y} \right)$	

75	Which of the foll				
	A. An analytic fu				
	B. A single value				
	C. An analytic fu				
		unction $f(z)$ is conunction $f(z)$ is con	•		
		b) Both B and D		d) Only C	c
76	The function $f(z)$		c) Only B	u) Only C	answer
-		b) Everywhere	c) Not	d) Neither	b
	continuous and	continuous but	continuous but	continuous nor	U
77	analytic.	not analytic. $-1)^2/(z^2 + 2z +$	1 analytic.	allarytic.	on avvan
′′	Let $f(z) = (z + f')$	- 1) /(Z + ZZ + Z	and the the ch	z = 4. The	answer
	value of $\frac{1}{2\pi i} \int_C \frac{f(z)}{f(z)}$	$\frac{dz}{dz}$ dz is			
	value of $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)}$ a) -2	b) -1	c) 1	d) 2	a
78	A bilinear transfo	formation $f(z) = (a$	(z+b)/(cz+d) v	with two distinct	answer
	fixed points α and	$d\beta$ is said to be ell	iptic if		
	a) $\left \frac{c\beta + d}{d} \right = 1$	b) $\left \frac{c\beta + d}{c\alpha + d} \right \neq 1$	$ c \frac{c\beta + d}{c} > 1$	d) $\left \frac{c\beta + d}{c\beta + d} \right < 1$	a
79	If P is the radius	$\frac{ \beta c\alpha+d }{ \alpha }$ of convergence of	$\frac{ f' c\alpha+d f'}{ fhermore fraction }$	$\frac{ c\alpha+d }{ c\alpha+d }$	ancwar
/9					answer
	a) R/n	ence of the power			c
80	a) K/H	b) nR 3z - 1. Then the n	ovimum volue of	d) $a_n R$	
80			iaximum value of	<i>J</i> (2) III tile	answer
	$domain D = \{z: a\}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	
	a) 5	tic on and inside a	c) √13	c) √5	С
81		answer			
	Then the value of				
	a)	b) $\frac{1}{2\pi i} \int_{C} f(z_0 +$	c) $\frac{1}{2\pi} \int_{C} f(z_0 +$	d)	С
	$2\pi i \int_C f(z) dz$	$re^{i\theta}$) dz	$re^{i\theta}$) dz	$\int_{C} f(z_0 r e^{i\theta}) dz$	
82	The nature of the	b) $\frac{1}{2\pi i} \int_C f(z_0 + re^{i\theta}) dz$ singularity of func	tion $1/(\cos z - \sin z)$	(nz) at $z = \pi/4$ is	
	(a) removable	(b) isolated	1	(d)essential	0
	singularity	singularity	(c) simple pole	singularity	С
83		ue of $(1 + i)^{24}$ is		Singularity	
- 05	a) 2 ²⁴	b) 2 ¹²	-) 26	1/ 23	L L
0.4	-		c) 2 ⁶	(1) 2 ³	b
84	w nat is the outpu	it of the following	Python code? print	(type(5.0))	
	a) <float></float>	b) <class< td=""><td>c) <+1/200</td><td>d) <class< td=""><td>b)</td></class<></td></class<>	c) <+1/200	d) <class< td=""><td>b)</td></class<>	b)
	a) <110at/	'float'>	c) <type 'float'=""></type>	'int'>	0)
		lioat >	lioat >		
85	What will be the	<u>l</u> output of this C co	l de?	1	
	int $x = 5$;	oatput of tills C to	uc:		
	printf("%d", x++)).			
	printi(/od , X11)				
	a) 6	b)			
		-1			
86	Which of the follo	owing is a valid ide	ntifier in C?	<u>I</u>	c)
	a) int	b)	c)_value	d)	
	,	2variabl	, _	value@name	
		e			
87	Which of the follo	owing is not a valid	Python data type?)	
1	11111511 51 6116 15116	o .5c u valla	, aata type		

	a) real	b) int	c) float	d) str	a)
88	What will be the				
	x = 3				
	print(x ** 2)	h)0	-) 0	4) 7	I-V
	a) 3	b)9	c) 8	d) 7	b)
89	print(5+6)	ut of this Python sr	nippet?		
	a) 11	b) error	c) none .	d) 56	a)
90	•	s used to transfer w		u , 50	a)
	a) HTTP	b) FTP	c) TCP	d) SMTP	aj
	a) III IP	0) FIF	C) TCP	u) Sivi i P	
91	What is the binar	y equivalent of the	decimal number 1	.3?	
	a) 1011	b) 1101	1001	d) 1110	b)
92	What is the funct	ion of the ALU (Ari	thmetic Logic Unit)	,	,
	a) Controlling	b) Data storage	c) Performing	d) Managing	
	input/output	, , , , , , , , , , , , , , , , , , , ,	arithmetic and	memory	c)
	•		logical		,
			operations		
93		ut of the following	C-code?		
	int $a = 10$;	10).			
	<pre>printf("%d", a == a) 1</pre>	b) error	c) 10	d) 1	d)
94	•	rom his house to hi		•	d)
34	•	y to his house at 15	•		
	about the average		min primi Gried e un	o control option	
	_	tween 10 to 11			
	/	een 11 to 17			
	,	een 10 to 15	\ D 101 1	IN C	,
	a) only A is	b) A and B both	c) B and C both	d) none of these	c)
	true			these	
95	In hypothesis test	ing, the p-value re	presents		
	71	, , , , , , , , , , , , , , , , , , ,			
	a) The	b) The	c) The	d) The power of	c)
	probability that	significance	probability of	the test	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	the null	level of the test	observing data		
	hypothesis is	С	at least as		
	true		extreme as the		
			current sample,		
			under the null		
			hypothesis		
96		owing is not true al	1	1	
	a) It is	b) It is defined	c) Mean,	d) It has two	
	symmetric	only for positive	median, and	parameters:	b)
	about the mean	values	mode are equal	mean and	
97	The joint probabi	 lity density functio	n of a 2D random v	variance	
	given by	my density function	ii oi a 2D iailuoili v	variable (A, I) 18	
<u> </u>	<i>U J</i>				1

$f(x,y) = \begin{cases} 2; & 0 < x < 1, 0 < y < x \\ 0, & elsewhere \end{cases}$ Choose the correct option about the conditional density function of Y given $X = x$ and for Y given $Y = y$ A. $1/x$ and $1/(1-y)$ B. $1/x^2$ and $1/(1-y)$ C. $1/x$ and $1/(1+y)$	
given $X = x$ and for Y given $Y = y$ A. $1/x$ and $1/(1-y)$ B. $1/x^2$ and $1/(1-y)$	
A. $1/x$ and $1/(1-y)$ B. $1/x^2$ and $1/(1-y)$	
B. $1/x^2$ and $1/(1-y)$	
(i) 1/ w and 1/ (1 + y)	
a) only A is true b) only B is true c) B and C true d) none of these a)	
98 The sample variance is an unbiased estimator of	
a) Population b) c) d) Population a)	
mean Populati Populati standard	
on variance on median deviation	
99 Which test is used to compare two means assuming equal variances? d)	
a) ANOVA b) Chi- c) Z-test d) Independent	
square test t-test	
10 The standard error of the mean decreases when:	
a) Sample size b) Sample size c) Population d) Mean b)	
decreases increases variance decreases	
increases	
10 If $P(A) = 2/3$, $P(B) = 1/2$ and $P(A \cup B) = 5/6$ then the events A c)	
1 and B are	
a) Mutually b) Independent c) Independent d) Dependent	
exclusive as well as only on event A mutually	
exclusive	
10 If in a binomial distribution $n = 4$, $P(X = 0) = 16/81$, then $P(X = 4)$ b)	
2 equals	
a) $\frac{1}{16}$ b) $\frac{1}{81}$ c) $\frac{1}{27}$ d) $\frac{1}{8}$	
The solution $y(x)$ of the integral equation $\int_0^x e^{x-t} y(t) dt = x$ is b)	
a) $v(x) = 1 + x$ b) $v(x) = 1 - c$ c) $v(x) = 1 - d$ d) $v(x) = 1 + d$	
$\begin{vmatrix} x & x^2 & x^2 \end{vmatrix}$	
a) $y(x) = 1 + x$ b)) $y(x) = 1 - $ c) $y(x) = 1 - $ d) $y(x) = 1 + $ 2 10 The second successive approximation to the solution of the integral b)	
4 equation $y(x) = x - \int_0^x (x - t)y(t)dt$, $y_0(x) = 0$ is: a) $y_2(x) = 1 - $ b) $y_2(x) = x - $ c) $y_2(x) = 1 - $ d) $y_2(x) = \frac{x^3}{3}$ $x - \frac{x^3}{3}$ $x - \frac{x^3}{6}$ $x - \frac{x^3}{6}$ c) A necessary condition for the extremum of the function	
a) $y_2(x) = 1 - $ b) $y_2(x) = x - $ c) $y_2(x) = 1 - $ d) $y_2(x) = $	
$\left \begin{array}{c c} x - \frac{x^3}{2} & \frac{x^3}{2} & -x - \frac{x^3}{2} \end{array}\right $	
10 A necessary condition for the extremum of the function	
$\int_a^b F(x,y,y') dx \text{ is:}$	
a) $\frac{\partial F}{\partial y'} = 0$ b) $\frac{\partial F}{\partial y'} = 0$ c) $\frac{\partial F}{\partial y'} = 0$ c)	
$\begin{vmatrix} y & y & y \\ d & \partial F & 0 \end{vmatrix}$	
$\left \frac{1}{dx} \left(\frac{\partial y'}{\partial y'} \right) \right = 0$	
The curve which extremized the functional $\int_a^b y'(1+x^2y')dx$ is the	
6 solution of the differential equation	

	14 . 0 2 /		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.,
	a) $1 + 2x^2y' =$	b) $xy'' + 2y' =$	c) $xy'' - 2y' =$	d) $xy'' +$	b)
	0	0	c) $xy'' - 2y' = 0$ d (x_1, y_1) and extremal	$2y'^2 = 0$	
10 7	A curve passing t	$\frac{\text{hrough}}{\text{mon}}(x_0, y_0)$ and	$d(x_1, y_1)$ and extre	emizing the	
,	functional $\int_{x_0}^{x_1} \sqrt{1}$				
		b) a parabola		d) a circle	d)
10			and (x_1, y_1)) which		
8	about the x –axis	gives a minimum $\frac{\partial F}{\partial r} = \frac{\partial F}{\partial r} = \frac{\partial F}{\partial r}$	surface area satisfic	es:	
		's equation $\frac{\partial F}{\partial y} - \frac{d}{dx}$			
	B) The differ	ential equation c^2	$\left(1 + {y'}^2\right) = y^2$		
	C) The differ	ential equation c^2	$(1+y'^2)=1+y^2$		
	a) only A is true	b) A and B both	c) B and C are	d) A and B are	d)
		true	true	true	
10 9	What is the main	objective of the Ca	lculus of Variation	ıs?	d)
	a) To evaluate	b) To solve	c) To	d) To find the	
	definite	differential	approximate	extrema of	
	integrals	equations	functions with	functional	
			polynomials		
11	Which among the	l Following is a <i>bou</i>	ndary condition in	ı a typical	
0					
	$a) y(x) = \sin x$	b) $\int_a^b y dx = C$	c) y'' + y = 0	$d) y(x_0) = y_0$	d)
11	The isonerimetric	nrohlem in Calcul	<u>l</u> us of Variations inv	olves:	d)
1	The Boperiniethe	problem in ealeur	us of variations inv	orves.	u)
	a) Optimizing a	b) Optimizing a	c) Solving	d) Optimizing a	
	function with	functional with	differential	functional	
	boundary	no constraints	equations	subject to an	
	conditions		numerically	integral	
11	The Fuley Leavens		aa iaa uffiai aat uuba	constraint	۵۱
11 2			es insufficient whe such cases, the ge		c)
	involves:	raci acrivatives. Ili	such eases, the ge	neral form	
	a) Lagrange	b) Only the first	c) Partial	d) No derivative	
	multipliers	derivative	derivatives up	at all	
	•		to the highest		
			derivative		
		<u> </u>	present		
11 3		$t)$ of a Fredholm ϵ , the equation can	equation is given by be reduced to:	$\gamma K(x,t) =$	b)
	a) A differential	b) A system of	c) A Fourier	d) A system of	
	equation	linear algebraic	series	differential	
	•	equations		equations	
11	In Neumann serie	es method, converg	gence depends on:		
4					

	a) The type of	b) The nature of	c) The norm of	d) Whether the	c)
	boundary conditions	the forcing function $f(x)$	the kernel $K(x, t)$ and λ	equation is linear or not	
	Conditions		K(x,t) and x	inical of not	
11	Which of the follo	owing equations ca	n occur as the clas	ss equation of a	(d)
5	group of order 10)?			
	10=1+1+1+2+5				
	10=1+2+3+4				
	10=1+1+3+5	4/40 1:			
	10=1+1+1++	T .	a) A Dand C	ط/ ۲۰۰۰ ۲۰۰۰	10=1+1+1++1
	a) Only A	b) A and B	c) A, B and C	d) Only D	(10 times)
11	For a positive inte	eger n, let $\phi(n)$ be	<u>the</u> Fuler's φ fun	tion. Which of	(b)
6		tements are true for		ction. Willem of	(5)
	$\phi(n)$ can never d				
	$\phi(p) = p$ for each				
	$\phi(n) \mid n \Rightarrow n \text{ can}$	have at most two	distinct prime divis	sors.	
	$\phi(n) \phi(nk)$ for	every positive inte	eger k.		
	a) A and B	b) C and D	c) A and D	d) All of the	C and D
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3, 5 3.1.2 2	3,774	above	
11	Given below are	two statements: O	ne is labelled as As	sertion (A) and	(d)
7	the other is label	led as Reason/Just	ification (R).		
	• •	to isomorphism th	e number of Abeli	an groups of	
	order 42 is 1.				
		There is a unique A		der n iff n is not	
	-	quare of any prime			
	the options given	above statements	choose the correc	ct answer from	
	a) A is false but	b) Both A and R	c) A is true but	d) Both A and R	Both A and R are
	R is true	are false	R is false	are true and R	true and R is the
	in is true	are raise	i i i i i i i i i i i i i i i i i i i	is the correct	correct reasoning
				reasoning of A.	of A.
11	Match the items	of 1 st column with	the items of 2 nd co		(a)
8	indicate the code	of correct matchin	ng:		
				T	
		of elements in the	•	i. 11	
		er a finite field F ₃ a			-
		of conjugacy classe	s of a group of	ii. 12	
	order 27 is	a abolian group of	order 60 than	iii. 27	-
	the number of s	e abelian group of oubgroups are	order ou, trieff	111. 27	
		of normal subgroup	os of order 5 in a	iv. 1	1
	group of order 3				
	a)A→(iii), B→(i)	b)A→(i),	c) A→(iv),	d) A→(iii),	A→(iii), B→(i)
	$,C\rightarrow (ii),D\rightarrow (iv)$	B→(iii),C→(ii),	$B \rightarrow (ii), C \rightarrow (i),$	$B\rightarrow (i)$, $C\rightarrow (ii)$	$,C\rightarrow$ (ii), $D\rightarrow$ (iv)
1	1	D→(iv)	D→(iii)	,D→(iv)	

11 9	Let (X,T) be a topological space, where, $X=\{a,b,c,d\}$ and $T=\{\varphi,X,\{b\},\{a,b\},\{a,b,d\}\}$ and $A=\{a,b,c\}\subset X$, then which of the following is the derived set of A? $D(A)=\{a,b,c\}$ $D(A)=\{a,c,d\}$ $D(A)=\{a,b\}$ $D(A)=\{a,d\}$					(c)
	a) Only A	b) Only D	c) Or	nly B	d) Only C	Only B
12 0	Pick the correct s If Y is connected If Y is compact, the second secon	gical space and G b tatements from th I, then G is connected $Y - G$ is compact left, then Y is compact left, then Y is comp	e follo ted. act.	•	open subset of X.	(d)
	a) A and B	b) A, B and C	c) Or	nly C	d) Only B	Only B
12 1	indicate the code	of 1 st column with of correct matchin	ng:		lumn and	(c)
		e of a compact space	ce is	i. Closed	maco	
	Compact subset	of a Hausdorff spa	ra is	ii. Normal s iii. Regular	•	
	Every T ₃ -space is		100 13	iv. Compac	•	
	a)A \rightarrow (iii), B \rightarrow (i) ,C \rightarrow (ii) ,D \rightarrow (iv)	B→(iii),C→(ii),			d) $A \rightarrow (iii)$, $B \rightarrow (i)$, $C \rightarrow (ii)$, $D \rightarrow (iv)$	$A\rightarrow$ (iv), $B\rightarrow$ (ii), $C\rightarrow$ (i), $D\rightarrow$ (iii)
12 2	Given below are to the other is labell Assertion (A):The homeomorphism Justification (B):	sertion (A) and $x = e^x$ is continuous map.	(c)			
	a) A is true but R is false	b) A is false and R is true	c) Bo are t is the expla	oth A and R rue and R e correct anation for	d) Both A and R are true but R is not the correct explanation for	Both A and R are true and R is the correct explanation for A
12	Consider the tone	 plogical space (X, T	A ")and	$A \subset X$ (who	A ere Δ'renresents	(d)
3	limit set of A), th	(σ)				
	A is everywhere	dense in X if		i. A' = A		
	A is perfect if			ii. A′ ⊆ A		
	A is closed if			iii. Cl(A) = X		
	A is open if			iv. Int(A) =	Α	

	a)A→(iii),	b)A→(iv),	c) A→(iv),	d) A→(iii),	$A \rightarrow (iii), B \rightarrow (i),$
	$B\rightarrow$ (iv) , $C\rightarrow$ (ii)	B→(iii),C→(ii),	$B\rightarrow$ (ii), $C\rightarrow$ (i),	B→(i) ,C→(ii)	$C \rightarrow (ii), D \rightarrow (iv)$
	,D→(i)	D→(i)	D→(iii)	,D→(iv)	
12	Given below are t	two statements: O	ne is labelled as As	sertion (A) and	(a)
4	the other is labell	ed as Reason/Justi	fication (R).		
	Assertion (A): Let	$A = \{(x, y) \in R^2 :$	$y=mx, m\ (\neq 0)$	$\in R\}\setminus\{(0,0)\},$	
	then A is nowher				
	Justification (B):	Interior of closure	of A is not null.		
			choose the correc	t answer from	
	the options given				
	a) A is true but	b) A is false and	c) Both A and R	d) Both A and R	A is true but R is
	R is false	R is true	are true and R	are true but R is	false
			is the correct	not the correct	
			explanation for	explanation for	
			Α	Α	
12	Given below are t	two statements: O	ne is labelled as As		(c)
5		ed as Reason/Justi			\ -1
			$x^2 + 103xy + 7y^2$	$^{2} > 1$ }, then <i>X</i> is	
	locally compact in			,	
	•		of a locally compa	ct Hausdorff	
		mpact in the subs			
			e options given bel	OW.	
	racinity the corre	et answer mom th	c options given bei	OW.	
	a) A is true but	b) A is false and	c) Both A and R	d) Both A and R	Both A and R are
	R is false	R is true	are true and R	are true but R is	true and R is the
			is the correct	not the correct	correct
			explanation for	explanation for	explanation for A
			Α	A	
12	Given below are t	two statements: O	ne is labelled as As	sertion (A) and	(b)
6	the other is labell	ed as Reason/Justi	fication (R).		
			$\{\varphi, \{a\}, \{a, b\}, \{a, b\}\}$	$\{x\}, X\}, Y =$	
		$\{x\}, \{y, z\}, Y\}$ and			
			= f(c) = y, then	f is not	
	continuous.				
	Justification (B):	The function f is co	ntinuous if image o	of every open	
	subset of X under	f is open in Y.			
	Identify the corre	ct answer from the	e options given bel	ow:	
	a) A is true but	b) Both A and R	c) Both A and R	d) Both A and R	Both A and R are
	R is false	are false.	are true and R	are true but R is	false
			is the correct	not the correct	
			explanation for	explanation for	
			Α ΄	Α ΄	
12	Let <i>A</i> and <i>B</i> be s	subsets of R . Define	$e C = \{a + b : a \in A\}$	$A, b \in B$ }. Pick	(b)
7		tatements from th	•	•	. ,
	(A) C is closed if				
	• •	A is closed and B is			
	• •	if <i>A is closed</i> and <i>E</i>	•		
		t least one of A and			
	, , = = = p=== w		1		
					L

	a) A and C	b) B and D	c) A, B and C	d) All of them	B and D
12 8	The number of no prime number) w	(c)			
	(a) $\frac{p-1}{p}$	(b) p	(c) $\frac{p-1}{2}$	(d) 1	$\frac{p-1}{2}$
9	the other is labell Assertion (A): If the relation betw Justification (R):	two statements: Or ed as Reason/Justi wo regression lines een the regression The product of the above statements below: b) A is false but	fication (R). s are parallel to each coefficients (b_{xy} and slopes of the regre	ch other, then nd b_{yx}) is $b_{xy}b_{yx}=1$ ession lines is	(d) A is true but R is
	are true and R is the correct reasoning of A.	R is true	are true but R is not the correct reasoning of A.	R is false.	false.
13 0	following factor Origin but not sca Scale but not orig		, -	hich of the	(d)
	a) Only A	b) Only B	c) B and C	d) Only C	Only C
13 1	Given below are to the other is labell Assertion (A): A ropopulation by using that the sample in 25% of the standard Justification (B): In the light of the the options given	(c)			
	a) A is true but R is false	b) A is false and R is true	c) Both A and R are true and R is the correct explanation for A	d) Both A and R are true but R is not the correct explanation for A	Both A and R are true and R is the correct explanation for A
13 2	Which of the followard (A) \overline{X} is a minimal normal population \overline{X} is not a machine a normal population (C) Neither (a) respectively.	(a)			

	(D) None of the				
	a) Only A	h) Only C	c) Only B	d) Only D	Only A
13		b) Only C	c) Only B	d) Only D	Only A
3	$\lim_{n\to\infty} (1+2/n)^n$	•			Answer
	a) <i>e</i>	b) e ²	c) 1	d) 0	(b)
13 4	A sequence of rea	 al numbers conver	ges if and only if it	is	Answer
	a) monotonic	b) increasing	c) cauchy	d) bounded	(c)
13 5	Which of the followards A. The set of irrors B. The set of ract C. The set of all D. The set of all	Answer			
	A and D	b) A, C and D	c) C only	d) D only	d)
13 6	If f is a function G	of bounded variation		,	Answer
	a) f can be expressed as the difference of two monotone increasing functions.	b) f must be absolutely continuous	c) f must be differentiable everywhere	d) f must be convex	(a)
13 7	Which of the follo	owing is not a prop	perty of Lebesgue n	neasure?	Answer
	a) Countable additivity	b) Translation invariance	c) monotonicity	d) Multiplicatively under convolution	(d)
13 8	Which of the follo	Answer			
	$a) f(x) = \sin x$	$b) f(x) = x^3$	$\begin{array}{c} c) f(x) = \\ \sqrt{x+1} \end{array}$	$d) f(x) = \cos x$	(b)
13 9	The directional do of vector (1,2) is		$\sqrt{x+1} = x^2 + y^2 \text{ at } (1,1)$) in the direction	Answer
	a) $2/\sqrt{5}$	b) $6/\sqrt{5}$	c) $8/\sqrt{5}$	d) $2\sqrt{5}$	(b)
14 0	The Lebesgue me	easure of the Canto	or set is	1	Answer
	a) 0	b) 1	c) 1/2	d) nonmeasurabl e	(a)

14 1	Which of the follo	Answer				
*	If I is a limit point	of (u_n) , then	lim	$u_m = l$.		
	$\lim_{n\to\infty}u_n=l$, then		11 ,00			
	Every bounded se					
	Every bounded se	equence nas a	111111	••		
	a) A and B	b) A and C		c) B and C	d) A,B and C	(b)
14				e the correct optio		Answer
2	=	sequence of	real	numbers has a con	vergent	
	subsequence. R: The real numb	ars R is a com	nleta	a matric snaca		
	a) Both A and R	b) Both A and		c) A is true, R is	d) A is false, R is	(b)
	are true, and R	are true, but		false.	true.	
	is the correct	is not the				
	explanation of	correct				
	A.	explanation of	of			
14	Matab tha same	A	. v o c J	statom set:		Anguer
3	Match the conce	pt with the cor	rect	statement:		Answer
	A. Rolle's theore	em	i.lf	f(a) = f(b), then	$\exists c \in (a,b)$	
				h that $f'(c) = 0$	(,)	
	B. Mean Value T	heorem	ii. R	Relates average rate	e of change to	
				cantaneous rate of		
	C. Improper Inte	gral Test		Determines conver	~	
				ng comparison with	n improper	
	a) A-i, B-ii, C-iii	b) A-i, B-iii, C		egrals. c) A-ii, B-i, C-iii	d)A-iii, B-ii,C-i	(a)
14				$\varphi = \sum_{i=1}^{n} a_i$		Answer
4	0, is defined as	-0		<i>r</i> 2 <i>l</i> -1	$i \mathcal{M} E_l$	
		,		,	,	
	a) $\sup a_i$	$b)\sum_{i=1}^{n}a_{i}m(i)$	E_i)	c) $\int_a^b f(x)dx$ in	d) inf a_i	(b)
				Riemann sense		
14	Which of the follo	owing stateme	nts i	s/are true?		Answer
5	A 11-15-			a a a matter of the		
		vergence pres		s continuity. s integrability.		
		• .		s differentiability.		
		nvergence pre		•		
	a)A and B.	(a)				
14	If f(x,y) = x -	\mid b) A and C. + \mid $y\mid$, then at	(0,0	c) A, B and C)	d) B and C.	Answer
6	,				l n =	(1)
	a) Both partial	b) Partial	_	c)Partial	d) Partial	(b)
	derivatives exist and are zero.	derivatives d not exist	0	derivatives exist but <i>f</i> is not	derivatives exist and f is	
	and are zero.	HOL EXIST		differentiable	differentiable	
				JC. C.I.C.	JC. C.I.C.	
14	The entering varia	able in each ite	erati	on of the simplex r	nethod is chosen	Answer
7	based on			-		

	a) Minimum ratio test	b) Maximum value in the cost row (for maximization)	c) Pivot element	d) Slack variables	(c)
14 8	The inverse function theorem requires				Answer
	a) Continuity of the function	b) The Jacobian determinant at the point is nonzero	c) The function to be one-to- one everywhere	d) The function to be bounded.	(b)
14 9	The steady-state probability that the system is empty in an M/M/1 queue is				Answer
	a) $1 - \rho$	b) <i>ρ</i>	c) μ/λ	d) 0	(a)
15 0	In a basic EOQ (Economic Order Quantity) model, the total cost is the sum of				Answer
	a)Ordering cost + Holding cost	b) Ordering cost + Shortage cost	c) Holding cost + Transportation cost	d) Ordering cost only	(a)