Test Booklet No	
This booklet consists of 150 questions and	pages.

RGUPET/2025/1004/104

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN ELECTRONICS AND COMMUNICATION **ENGINEERING**

Full Marks: 150	Time: 3 Hours
Roll No.	
Day and Date of Examination:	
Signature of Invigilator(s)	
Signature of Candidate	
General Instructions:	

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	The "Mission Sudarshan Chakra", recently launched by the Prime Minister of India, primarily relates to									
	a) a national renewable energy mission	renewable currency mission a multilayered air mission to								
2		itional mission being abay is related to the d		e Indian Institute of	Drone technolog y					
	a) Helicopters	b) Dairy technology	c) Drone technology	d) Artificial intelligence	c)					
3	North East India' to connect	s first underwater tun	nel project, announced	d in 2024, is proposed	Numaliga rh and Gohpur					
	a) Dibrugarh and Dhemaji	b) Jorhat and Majuli	c) Numaligarh and Gohpur	d) Guwahati and North Guwahati	c)					
4	A. Canada ho B. Four playe C. Sweden w D. Operation	owing statements are osted the 51st G7 summers were honoured with a standard first in Gloan Sindoor was Launcon 7th May 2025.	mit in 2025. th the Khel Ratna Awa bal Innovation Index		(a)					
	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D					
5	 Which of the followings are correct? A. Lip Butan has been appointed as the new CEO of Intel in March 2025 B. Shri C P Radhakrishnan has been appointed as the Vice President of India C. India's rank in the Human Development Index 2025 released by UNDP is 99 D. India has become the 2nd largest road network in the World. 									
	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only					
6	Which of the following sentences is false? A. Palk Strait joins India and Sri Lanka B. The Radcliffe Line is between India and Bangladesh C. The MacMohan Line separates India and China D. The Durand Line is between Iran and Afghanistan.									
	a) A, B	b) B, C	c) C, D	d) B, D	(d)					

7	Assertion (A): Eclipses do not occur on all full moon and new moon days. Reason (R): The moon revolves round the earth in an elliptical orbit.						
	a) A and R are true and R correctly explains A.	b) A and R are true but R does no explain A.	c) A is true R is false	d) R is true but A is false	(b)		
8	Right to equality	is a-			Fundame ntal right		
	a) fundamental right	b) social right	c) cultural right	d) legal right	(a)		
9		book "Midnight's			Salman Rushdie		
10		b) Leo Tolostoy zations with their h		e d) R K Narayan	(c)		
	A. UNESCO B. WHO		New York Paris				
	C. UNICEF	3.	Geneva				
	D. IMF	4.	Washington D.C.				
	a) A-3, B-2, C- 4, D-1	b) A-2, B-3, C-1 D-4	, c) A-2, B-4, C-3, D-1	d) A-1, B-3, C-2, D-4	(b)		
11	He said, "Happy The correct indire	new year!" ect speech of the ab	oove is-		He wished me a happy new year.		
	a) He said the new year was happy.	b) He wished me happy new year.	a c) He said to me that happy new year.	d) I was wished a happy new year.	(b)		
12	Identify the corre	ect sentence(s) from	the following.				
	A. One of my friends is a doctor.B. I don't know nothing about her.C. It is a two-hour journey.D. We will be definitely there at the yesterday's programme.						
	a) A, B	b) B, C	c) A, C	d) C, D	(c)		
13	"She drank the milk that was there in the flask." The appropriate quantifier to fill in the blank is-						
	a) all	b) little	c) sour	d) few	(b) There is a		
14	"a/ great /and/ reality/their/ theory/in/there/ disparity/is" The correct reordered meaningful sentence with the above jumbled words/phrases is-						
	Q. There is a grea	t theory and their re at disparity in their sparity is in a theory	theory and reality.		theory and reality.		

	S. Their great the					
	a) P	b) Q		c) R	d) S	(b)
15	The correct match	h of synonyms a	nd an	tonyms is:		A-ii, B- iii, C-i,
	A. Futile		i. He	elp		D-iv
	B. Generic			ffective		
	C. Hinder		iii. I	ndividual		
	D. Inception		iv. T	ermination		
	a) A-i, B-ii, C- iii, D-iv	b) A-iii, B-ii, C D-iii	:-iv,	c) A-iv, B-iii, C-i, D-ii	d) A-ii, B-iii, C-i, D-iv	(d)
16	The total number	of squares in the	e follo	owing figure is:		22
	a) 24	b) 20		c) 22	d) 18	(c)
		,				, ,
17	Fill in the blank i					KLLV
	ELFY GI	LHX ILJW	N	MLNU		
				1		
	a) KLLV	b) KLMX		c) JLLV	d) JLMX	a)
18				son of the only brother	r of his father's wife.	cousin
	How Raghav and	Vineet are relate	ed?			
	a) brothan	h) cousin		c) uncle	d) son-in-law	(h)
	a) brother	b) cousin		c) uncle	u) son-m-law	(b)
19	Which two nun	l nhers should h	e int	terchanged to make	the given equation	6, 8
17	mathematically c		C 1110	teremanged to make	the given equation	0, 0
			+ 72	$\div 8 - 24 = 12$		
		5 / 0	. , _	. 0 21 12		
	a) 6, 8	b) 6, 24		c) 3, 8	d) None	(a)
	u) 0, 0	0, 0, 21		0) 3, 0	d) Trone	(u)
20	If BANKER is co	oded as CAOKF	R, the	en how would LAWY	ER be coded?	MAXYF
			,			R
	a) LBWZES	b) LBWYFR		c) MAXYFR	d) MAXZES	c)
21	Same error occur	s at the same siz	e in e	every measurement, ar	nd such errors can	
				hrough the sources of		
	removing them.	•	_	_	=	
	a) Random	b) Systematic		c) Cascading	d) Perpetual errors	
	errors	errors		errors	_	b

22	Hypothesis-driven research begins with a hypothesis. A hypothesis is a statement about the world that can be true or false, and whose truth is being tested.							
	a) A valid	b) A hypothesi	s is	c) A hypothesis	d) A	valid		
	hypothesis is based on 'that exists'	a positive conclusion	15	can never be tested	_	thesis must be	d	
23	hypotheses?	C		could be considered decreases the odds of				
	disease. B. What is the be C. Macs are bette	st fertilizer to user than PCs.	se to g	get large and tasty tom ter than RCS Aspirin.		-	Answer	
	a) A, B	b) A, B, C		c) A, D	d) B,	С	c	
24	A: Find how the stemperature.	Relate the 'function or relationship' (A) and 'comment' (B) and select the appropriate answer A: Find how the speed of sound in air at fixed pressure depends upon air temperature. B: The control variable is temperature, and the response variable is sound speed.						
	a) Functional relationship is correct and the comment is true for the relationship	b) Functional relationship is incorrect but the comment is true for the relation	he ie	c) Functional relationship is correct but the comment is false for the relationship	d) No funct relati corre	either the	a	
25	Relate 'sampling							
	A. Deliberate		int su	mple collected as formation received an rvey progresses	d			
	B. Simple random		he	imple drawn from a terogeneous group			Answer	
	C. Stratified		pa	urposive selection of articular units				
	D. Sequential		ha	ery item in the popula s an equal chance of clusion	tion			
	a) A-iii, B-iv, C-ii, D-i	b) A-ii, B-iv, C D-i		c) A-i, B-iii, C-ii, D-iv	Ď-i	iii, B-ii, C-iv,	a	
26	Number of obserwill be there betw			stribution is 1000. Ho	w mar	ny observations	Answer	
	a) 500	b) 680		c) 720	d) 95	0	b	

27	Which of the fo	ollowing are reasons for	r citing a paper?							
	A. use its ideas, definitions, terms in a Research B. provides upcoming facts regarding undergoing Research Question. C. to adopt part/full methodology it adopted for a certain task. D. to refer to data also used in Current Research.									
	a) A, B, C b) B, C, D c) A, C, D d) A, B, D									
28	A. Gift authors B. Extensive ex C. Salami Slicit D. Extensive re	periments ng ferencing	d crank up their citation	on ranking, which are	Answer					
29	, , ,		c) B, C, D	a) A, C, D	d					
	a)A, B, C b) A, B, D c) B, C, D d) A, C, D Match the references (APA 7 style): A. Journal Article i. Edwards, A. A., Steacy, L. M., Siegelman, N., Rigobon, V. M., Kearns, D. M., Rueckl, J. G., & Compton, D. L. (2022). Unpacking the unique relationship between set for variability and word reading development: Examining word- and child-level predictors of performance. Journal of Educational Psychology, 114(6), 1242–1256. https://doi.org/10.1037/edu0000696 B. Authored Book ii. Levenson, H., Jinich, S., Vaz, A., & Rousmaniere, T. (2025). Deliberate practice in emotionally focused couple therapy. American Psychological Association. https://doi.org/10.1037/0000436-000 C. Webpage iii. Zeleke, W. A., Hughes, T. L., & Drozda, N. (2020). Home-school collaboration to promote mind-body health. In C. Maykel & M. A. Bray (Eds.), Promoting mind-body health in schools: Interventions for mental health professionals (pp. 11–26). American Psychological Association. https://doi.org/10.1037/0000157-002 D. Edited iv. Taras, Z. (2024, May 30). Situational irony can be funny, tragic or even terrifying. howstuffworks.									
	a) A-i, B-ii, C-	situational-irony b) A-ii, B-iii, C-iv,	c) A-iii, B-ii, C-i,	d) A-i, B-ii, C-iii,	_					
	iv, D-iii	Ď-i	D-iv	D-iv	a					
30		ne following refers to p	oositive skewness?							
	a) Mean - Median - Mide	b) Means Median-Mode	c)	d) Mean Median Mode	С					

31	How much is the	e degree of fr	eedom for	r the follow	ing data ta	ble?		
	S. No.		othesised mean			D_i^2		
		•	$t_{H_0} = 578 \text{ kg}.$, , , , ,	±4G /	,		
	5	572	578	-6	:	36		
	6 7	57 8 570	578 578	0 -8	,	0 54		Answer
	8	572	578	_6 _6		36		
	9	596	57 8	18		24		
	$\frac{10}{n=10}$	544	578	$\frac{-34}{\sum D_i = -60}$	$\sum D_i^2 = 181$			
	a) 8	b) 9		c) 10	2, -101	d) 18		
	a) o	0) 9		c) 10		u) 16		b
								U
32	Find out the Nul	l hypothesis fo	r the giver	table				
	S. No.	X _i Hypot	thesised mean	$D_i = (X_i - \mu_{H_0})$	D_i^2			
		m_H	$t_u = 578 \text{ kg}.$					
		572 578	578	-6	36			
	б 7	57 8 570	578 578	0 -8	0 64			Answer
	8	572	578	-6	36			
	9	596 544	578 578	18 -34	324 1156			
	n=10			$\sum D_i = -60$	$\sum D_i^2 = 1816$			
	a) $\mu H_0 = 578$ kg.	b) μ H ₀ ≠ 57	78kg	c) $\mu_{H_0} = -$	578kg	d) $\mu_{H_0} = \pm 5781$	ka	a
33	What will be sur		-					Answer
		b) 0		c) +∞		d) undefined		b
34	a) -∞ Derive from the		agram	C) +w		d) undermed		U
	O.05 of area O.45		ailed hyp		model at 9	-		Answer
	true and justification explains the Assertion	false but justification explains the Assertion	n	and justific true but do explain the Assertion	cation is bes not	and justification in the Assertion in incorrect	on for	d
35	Match into pairs		stical meth		propriate d	letails mentione	ed:	
	Statistical	method		Γ	Details			
	A. Correlation		i. Order	2, 3, 4,	• • •			A marra
	B. Polynomial	regression		than two p		on same		Answer
	C. ANOVA			of homoger	neity			
						es es		
	D. Chi square iv. Requires only two variables							

	a) A-i, B-ii, C- iii, D-iv	b) A-iv, B-i, C- D-iii	-ii,	c) A-iv, B-ii, C-i, D-iii	d) A-iii, B-i, C-ii, D-iv	b		
36	Match the follow		corre					
	A. Nature of Interaction holding atom B. Rate of Chemical Reaction C. Increase the rate of reaction D. hydrocarbon chain insoluble in water i Kinetics ii Bond iii Lipid iv catalyst							
	a) A(i), B(ii), b) A(ii), B(i), c) A(iii), B(ii), d) A(ii), B(iii), C(i), C(iii), D(iv) C(iv), D(iii) C(i), D(iv)							
37	In a simple harm	onic motion, the	veloc	city of a particle is ma	ximum at:	Answer		
	a) Mean position	b) Extreme position		c) Halfway between mean and extreme	d) At all positions	(a)		
38	In a double-slit e to the fringe space			ince between slits is d	oubled, what happens	Answer		
	a) Fringe spacing halves	a) Fringe spacing doubles		c)Fringe spacing remains the same	d)Fringe spacing quadruples	(a)		
39	A block slides do statements is true		s incli	ined plane. Which of t	the following	Answer		
	a) Mechanical energy is not conserved	b) Potential endecreases, kine energy increase	etic	c) Kinetic energy decreases	d)Acceleration is zero	(b)		
40	Which of the following			oton in a vacuum?		Answer		
	a) It has mass but no energy	b) It has energy but no rest mas		c) It has rest mass and energy	d) It can be accelerated by a force	(b)		
41	Which of the following	owing is diamag	gnetic	?		Answer		
	a) CO ₂	b) O ₂		c) NO	d) O ₂ -	(a)		
42	Match the following ligands with their denticity:							
	A. NH ₃ B. EDTA C. Oxalate D. Porphyrin		ii. M iii. F	ladridentate Ionodentate Hexadentate Sidentate				
	a) A-ii, B-iii, C-iv, D-i	b) A-ii, B-iii, C D-iv	C-i,	c) A-iv, B-iii, C-ii, D-i.	d) A-ii, B-i, C-iv, D-iii	(a)		

43	In which of the following compounds is the metal-metal bonding present?						
	a) NaCl	b) ZnO	c) Al ₂ O ₃	d) Cr ₂ Cl ₆	(d)		
44	A solution contain Calculate the osn		volatile solute in 1 L of	f water at 298 K.	Answer		
	a) 2.44 atm	b) 1.33 atm	c) 0.22 atm	d) 0.11 atm	(a)		
45	According to Her	nry's law, the solubili	ty of a gas in a liquid	is:	Answer		
	a) Independent of pressure.	b) Directly proportional to pressure.	c) Inversely proportional to pressure.	d) Exponential with pressure.	(b)		
46	$\operatorname{If} f(x) = \begin{cases} \{ x - f(x) \\ f(x) = f(x) \end{cases}$	pressure. $2)/(x-2)$, $x \neq 0$, otherwise)		Answer		
	a) -1	b) 1	c) 0	d) does not exist	d		
47	$If y = x^5 - 5x^4$	$+5x^3-1$, then the	value of $\frac{d^6y}{dx^6}$ is		Answer		
	a) 120 <i>x</i> – 120	b) 120	c) 0	d) cannot be evaluated.	С		
48	[a , b] to satisfy R A. f is continuou B. f is differentia C. $f(a) = f(b)$		a, b]. val (a, b)	ned on closed interval	Answer		
	a) A and B	b) only D	c) B and C	d) Only C	b		
49	A group which sa	tisfies commutativel	y property is known a	•			
	group	b) Quotient group		d) Normal group	a		
50	Let M^T denotes transpose matrix of M and I is identity matrix. Match the following: A. M is idempotent B. M is symmetric i. $M = M^T$ C. M is skew-symmetric ii. $M^2 = I$ D. M is involution iv. $M^2 = M$						
	a) A-iv, B-i, C- iii, D-ii	b) A-i, B-iv, C-ii, D-iii	c) A-iv, B-i, C-ii, D-iii	d) A-iv, B-ii, C-i, D- iii	c		

51	Which one of the following statements are true:							
	Statement1: If two sets A and B are equal, then $A \subseteq B$ and $B \subseteq A$ Statement2: Two sets are equal if and only if every element of A is in B, and every element of B is in A.							
	a) 1 is True and 2 is False	b) 1 is False ar 2 is True	d) 4					
52	Relate the Assertion	n and Reason th	ereo	f:			Answer	
	charged and the sill	k gets negatively	y cha			·		
	Reason (R): On rubbing, electrons from silk cloth moves to the glass rod. a) Both Assertion (A) and Reason (A) and Reason (B) are true and (B) are true but (C) Assertion (A) and Reason (B) are true but (C) Assertion (B) are true but (C) Assertion (C) Assertion (C) Assertion (C) and Reason (C) are false. Reason (R) is the correct (C) Explanation of (C) Assertion (C) Both Assertion (C) Assertion (C) Assertion (C) Both Assertion (C) Assertion (C) Both Assertion (C) Assertion (C) Both Assertion (C) and Reason (C) are false.						С	
53	Type Questions her	Assertion (A). re for matching J	pairs	:			Answer	
	A. Mass B. Weight C. Energy D. Power a) A-2, B-4, C-1, D-3	2	1. 2. 3. 4.	Joule KG Watt Newton c) A-2, B-4, C-3, D-1	d) A-4, D-3	, B-1, C-2,	A	
	D-3	D-3		D-1	D-3			
54	Which one of the formal Statement 1: The in Statement 2: Disjoint a) 1 is True and 2	tersection of two	o dis imon	joint sets is the empt		h are True	Answer	
	is False	2 is True	Iu	c) Both are Taise	u) Bou	ir are true	Α	
55	Relate the Assertion and Reason thereof: Assertion (A): No two electric lines of force can intersect each other. Reason (R): Tangent at any point of electric line of force gives the direction of electric field.						Answer	
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of a) Both Assertion (b) Both Assertion (c) Assertion (d) Both Assertion (is true but Reason (is true but Reason (is false. (is false. (is false.) (ii false.						

56	Type Questions here for matching pairs:						
	A. Tunnel Di	ode 1	1.				
				Y			
	B. Junction I	Diode 2	2.	*			
	C. Schottky Diod	e 3	3.				
	D. Zener Diode		4.				
) A 2 D 4 C 1	1) 4 2 D 1	<u> </u>	A)	10 4 2 0	1.02	D
	a) A-2, B-4, C-1, D-3	b) A-3, B-1, D-2	C-4,	c) A-4, B-1, C-3, D-2	d) A-3, B D-4	-1, C-2,	В
57	Which of the follow	wing accordin	g to Ko	CL must be zero?			
	a) Algebraic sum	b) Algebraic		c) Algebraic sum	d) Algebr		a)
	of currents in a node.	of power in node	a	of losses in a closed loop	of voltage closed-lo		
58	Which of the follow	wing is not an	expres		ı		
	a) P=VI	b) P=I ² R		c) P=V ² /R	d) P=I/R		d)
59	Match the following	ng pairs:					
	A. Inductance			tive Sensor			
	B. Piezoelectric		ii. Pa	assive Sensor			
	C. Transformer		iii. T	ransducer			
	a) A-i, B-ii, C-iii	b) A-ii, B-i,	C-iii	c) A-iii, B-ii, C-i	d) A-i, B-	-iii, C-ii	b)
60	Match the following	ng pairs:			l		
	A. Decoder		i. Ga	te			
	B. Counter		ii. Se	equential			
	C. EXOR		iii. C	ombination			
	a) A-i, B-ii, C-iii	b) A-ii, B-i,	C-iii	c) A-iii, B-ii, C-i	d) A-i, B-	-iii, C-ii	c)
61	Match the following	g pairs:			•		
	A. Cosine		i. Od	d			
	B. Sine	B. Sine ii. Even					
	C. 34		iii. C	onstant			
	a) A-i, B-ii, C-iii	b) A-ii, B-i,	C-iii	c) A-iii, B-ii, C-i	d) A-i, B-	-iii, C-ii	b)
62	Match the following	g pairs:					
	A. stdio.h		i. dat	a type			
	B. integer		ii. lib	• 1			
	C. main ()			inction			
	a) A-i, B-ii, C-iii	b) A-ii, B-i,	C-iii	c) A-iii, B-ii, C-i	d) A-i, B-	-iii, C-ii	b)
		<u> </u>		1			1 .

63	Match the following pairs:					
	A. LPF	i. Passes high-frequency frequency signals.	y signals and blocks	low-		
	B. HPF	ii. asses signals within a range only.				
	C. BPF	iii. Passes low-frequency high-frequency signals.		3		
	a) A-i, B-ii, C-i	ii b) A-ii, B-i, C-iii	c) A-iii, B-i, C-ii	d) A-i, B-iii, C-ii	c)	
64		lse OC has 128 resolutions. DC has 2048 resolution	s.			
	a) 1 is true	b) 2 is true	c) both are true	d) both are false	a)	
65	a) TV remote c	ollowing statements are to ontrol used infrared ray ontrol used ultraviolet ra				
	a) a only	b) b only	c) both are true	d) both are false	c)	
66		f radio waves in free spa		d of light		
	a) A is true and is the correct justification of	is true but not the	c) A is True and B is False	d) A is False and B is True	a)	
67		ncy is increased, the res y increases, the skin effe				
	a) A is true and is the correct justification of	is true but not the	c) A is True and B is False	d) A is False and B is True	a	
68	additivity.	s the system's response to original input.	•	· ·	b)	
	a) A is true and is the correct justification of	is true but not the	c) A is True and B is False	d) A is False and B is True	b)	
69	B: A non-causa	e systems concerned with I system is one where th and past inputs, not futu	e output at any giver			
	a) A is true and is the correct justification of	is true but not the	c) A is True and B is False	d) A is False and B is True	c)	

70	•	eted to a microproces		nes and 8 data	
	a) 8 KB	e the memory capacit b) 1 MB	c) 16 MB	d) 64 KB	b)
	a) 6 KD	b) I WID	C) TO MID	u) 04 KD	0)
71	What will the value MOV AX, 2006H	ne of AH register afte	er this instruction?		
	a) 20H	b) 06H	c) 00H	d) 26H	a)
72	How many addres microprocessor?				
	a) 10	b) 16	c) 12	d) 20	c)
73	Find out the minir	num sampling freque	ency of $x(t) = A\sin(10^{\circ})$	00πt) signal.	
	a) 20	b) 50	c) 80	d) 100	d)
74	Find the Z-transfo	rm of $\delta(n+3)$			z ³
	a) z	b) z ²	c) 1	d) z^3	d)
75		gates are used to fo			2
	a)1	b)2	c)3	d)4	b)
76	The inverter can b	e produced with how	<u></u>		1
	a)1	b)2	c)3	d)4	a)
77	For the system, y	$(t) = u\{x (t)\} \text{ which } c$	of the following hold	Is true?	System is time- invariant, causal and stable
	a) System is Linear, time- invariant, causal and stable	b) System is time-invariant, causal and stable	c) System is causal and stable	d) System is stable	b)
78		ss of reducing the sar	npling rate by a factor	or D?	Decimatio n
	a) Sampling rate conversion	b) Decimation	c) Interpolation	d) None of the mentioned	b)
79		ce is complex, then ree is the sou		nsfer occurs when	complex conjugate of
	a) equal to	b) negative of	c) negative of complex conjugate of	d) complex conjugate of	d)
80	In a counter, maxi	mum number of state	es possible with 4 fil	p flips is	16
	a)15	b)16	1 a)4	4)2	b)
	a)15	b)16	c)4	d)3	b)

81	Match the following	ıg:				A-2, B-3,
	A. Universal gate		1 NO	OT gate		C-4, D-1
	B. Exclusive gate			AND, NOR		
	C. Buffer			3. XOR, XNOR		
					·	
	D. Inverter		4. NO	o inversion, unity ga	in	
	a) A-3, B-4, C-1,	b) A-3, B-	-2 C-1	c) A-2, B-3, C-1,	d) A-2, B-3, C-4,	d)
	D-2	D-4	-2, C-1,	D-4	D-1	u)
82	Match the following	ig:				A-3, B-1, C-2, D-4
	A) Output of sign			odulated		
	B) Error signal from			<u> </u>		
	C) Output of a JK		3. Ar			
	D) Signal receive			ochastic		
	a) A-1, B-3, C-2, D-4	b) A-3, B- D-4	-1, C-2,	c) A-3, B-1, C-4, D-2	d) A-1, B-3, C-4, D-2	b)
83	Match the following	ıg:				A-4, B-1, C-2, D-3
	A) PIN diode	:	1. ampl	1. Microwave amplification		
	B) GaAs MO	SFET	2. gener	Low noise microv	wave	
	C) Transferre	d electron		ectronic tuning of M	IW	
	device D) Varactor d	iode	oscil	ght wave detection		
	D) varación d	iloue	4. LI	gnt wave detection		
	a) A-1, B-2, C-4,	b) A-4, B-	-1, C-2,	c) A-2, B-3, C-1,	d) A-3, B-4, C-2,	b)
	D-3	D-3		D-4	D-1	
84	Match the following	ıg:		l	1	A-4, B-3, C-1, D-2
	A) Silicon		1. tri	ivalent		
	B) Arsenic		2. ra	rely used as semicor	nductor	
	C) Indium			entavalent		
	D) Germaniu			trinsic semiconducto		
	a) A-1, B-2, C-3, D-4	b) A-4, B- D-1	-3, C-2,	c) A-4, B-3, C-1, D-2	d) A-2, B-1, C-3, D-4	c)
85	Match the following	ıg:		l	.1	
	A) Detection of a signal in noise	periodic	1. Increas	se in bandwidth		
	B) Recovery of a limited signal from		2. Slope of	overload error		A-4, B-3, C-1, D-2
	uniformly sample					
	C) Finer quantiza signal	tion of	3. Nyquis	st rate		
	D)Delta modulati	on	4. Cross o	correlation		

	a) A-4, B-3, C-1, D-2	b) A-3, B-4, D-1	C-2,	c) A-4, B-3, C-2, D-1	d) A-4, B-2, C-1, D-3	a)
86	Match the followin	A-2, B-1,				
	A) Electroence	cephalograph	1. heart	Diagnostic tool for ailment	C-3, D-4	
	B) Electrocar	diograph		Diagnostic tool for ailment		
	1 1	manometer	3. 4.	used for measuring		
	D) Stethoscop	pe	heart	used to heart puls	e/	
	a) A-2, B-1, C-3, D-4	b) A-3, B-1, D-4			d) A-1, B-2, C-3, D-4	a)
87	Match the followin	g:		l		A-4, B-2, C-1, D-3
	A) Direct add		1.	MOV A, M		
	B) Register ac C) Register in		2. 3.	MOV C, A LDI 70H		
	addressing	idifect	3.	LDI /0II		
		addressing	4.	STA 3000H		
	a) A-1, B-2, C-3, D-4	b) A-4, B-2, D-3	C-1,	c) A-2, B-3, C-4, D-1	d) A-3, B-2, C-1, D-4	b)
88	Match the followin	g:				
	A. Type-0 system			ero steady-state error	for	
	B. Type-1 system		2. No for st	on-zero steady-state tep input		A-2, B-1,
	C. Type-2 system		paral	ro steady-state error polic input		C-3, D-4
	D. Higher-order s	ystem	4. Ov possi	vershoot & oscillational ble	ons	
	a) A-2, B-1, C-3, D-4	b) A-2, B-4, D-2	C-3,	c) A-1, B-2, C-4, D-3	d) A-1, B-3, C-4, D-2	a)
89	Match the following	g:				A-1, B-2, C-4, D-3
	A. Time scaling		1. x((at)		,
	B. Time shifting		2. x(1	t-T)		
	C. Amplitude scal	ing	3. x(-	·		
	D. Time reversal	T	4. Ax			
	a) A-1, B-2, C-3, D-4	b) A-2, B-1, D-4	C-3,	c) A-1, B-2, C-4, D-3	d) A-2, B-1, C-4, D-3	c)
90	Match the followin	g:		l		A-4, B-3, C-2, D-1
	A. Band-limited s	ignal	1. Ov	verlapping spectra		
	B. Nyquist rate		2. 1/2	2f _m		
	C. Nyquist interva	al	3. 2f ₁	n		

	D. Aliasing		4. M	$ax frequency \le f_m$		
	a) A-4, B-2, C-3, D-1	b) A-1, B-3, D-4	C-2,	c) A-4, B-3, C-2, D-1	d) A-1, B-3, C-4, D-2	c)
91	Match the following	g:				A-1, B-3,
	A. Low-pass filter	<u>,</u>	1 Pa	sses low frequency		C-4, D-2
	B. High-pass filte			ejects a specific frequ	uency	
	C. Band-pass filte	r		sses high frequency		
	D. Band-stop filte	er		sses a range of		
) A 1 D 4 C 2	1 \ A 2 D 1	_	iencies	1) A 1 D 2 C 4	1)
	a) A-1, B-4, C-3, D-2	b) A-3, B-1, D-2	C-4,	c) A-3, B-1, C-2, D-4	d) A-1, B-3, C-4, D-2	d)
92	Match the following	g:		<u>I</u>	1	A-4, B-3, C-2, D-1
	A. Zener diode		1. Li	ght detection		,
	B. LED		2. Fa	st switching		
	C. Schottky diode	;		ght emission		
	D. Photodiode		4. Vo	oltage regulation		
	a) A-4, B-3, C-1, D-2	b) A-4, B-3, D-1	C-2,	c) A-2, B-3, C-2, D-4	d) A-2, B-1, C-4, D-3	b)
93	Match the following	g:				A-3, B-4, C-1, D-2
	A. Silicon (Si)		1. Ba	and gap $\approx 1.43 \text{ eV}$,
	B. Germanium (G	le)	2. Ba	and gap \approx 9 eV		
	C. Gallium Arsen	ide (GaAs)	_			
	D 1 1 (0.0	`		and gap $\approx 1.1 \text{ eV}$		
	D. Insulator (SiO2			and gap $\approx 0.67 \text{ eV}$	1) A 2 D 4 C 2	`
	a) A-3, B-4, C-1, D-2	b) A-4, B-3, D-1	C-2,	c) A-4, B-3, C-1, D-2	d) A-3, B-4, C-2, D-1	a)
94	Which one of the f	ollowing state	ments	are true:	1	A and D
	A. Silicon diode fo B. Zener diode is a C. Schottky diode D. Photodiode dete	lways used in is slower than	forwa	rd bias.		
	a) A only	b) D only		c) A and D	d) B and C	c)
95	Which one of the formal A. AND gate output B. OR gate output C. XOR output is 1 D. NAND is not a	nt is 1 only wh is 0 when all i when inputs	en all nputs a are equ	inputs are 1. are 0.	1	A and B

		I., 5		10.4.15		
	a) A only	b) B only	c) C and D	d) A and B	d)	
96	Which of the following quantities give a measure of the transient characteristics of a control system, when subjected to unit step excitation. 1. Maximum overshoot 2. Maximum undershoot 3. Overall gain 4. Delay time 5. Rise time 6. Fall time					
	a) 1,3 and 5	b) 2, 4 and 5	c) 2,4 and 6	d) 1,4 and 5	d)	
97	Which one of the f A. Binary has digit B. Decimal has dig C. Octal has digits D. Hexadecimal ha	s 0 and 1. its 0–10. 0–7.			A and C	
	a) A only	b) A and C	c)B and D	d) B and C	b)	
98	Which one of the following statements are true: A. SR flip-flop has invalid state at S=R=1. B. D flip-flop removes the invalid state problem. C. JK flip-flop toggles at J=K=1. D. T flip-flop is derived from SR flip-flop.					
	a) A only	b) B only	c) A and B	d) B and C	c)	
99	Which one of the f A. Multiplexer seld B. Demultiplexer r C. Decoder conver D. Encoder conver a) A only	ects 1 of many inpoutes 1 input to notes to binary to one-h	outs. nany outputs. not output.	d) B and D	A and B	
100	Which one of the following statements are true: A. Ideal op-amp has infinite input resistance. B. Ideal op-amp has zero output resistance. C. Ideal op-amp has infinite open-loop gain. D. Ideal op-amp has zero bandwidth.		d) A. D. C J. D.	A, B, and C		
	a) A and B	b) A and C	c) A, B, and C	d) A, B, C, and D	(c)	
101			band gap than Germa mproves thermal stab		Both A and B are true and E is the correct explanation	

	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	a)
102	Justification (B): sensitivity.	otodiode is generally Reverse bias widens	the depletion region	, improving	Both A and B are true and B is the correct explanatio n of A
	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	a)
103	Assertion (A): MO Justification (B):	OSFET has very high The gate is insulated	from channel by a th		Both A and B are true and B is the correct
	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	a)
104		ner diodes regulate v Voltage regulation is			A is false but B is true
	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	d)
105		ping pentavalent imp Pentavalent impurition		ype semiconductor.	A is false but B is true
	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	d)
106		pping trivalent impur Trivalent impurities o		e semiconductor.	A is true but B is false
	a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	c)
107	Assertion (A): Inta	rinsic carrier concent Mobility of carriers of			Both A and B are true but B is not the correct explanatio n of A

	a) Both A and B	b) Both A and B	c) A is true but B	d) A is false but B	b)
	are true and B is	are true but B is	is false	is true	
	the correct	not the correct			
	explanation of A	explanation of A			
108	Assertion (A): Ze	ner diodes regulate v	oltage in reverse bre	akdown.	Both A
		Heavy doping leads			and B are
	voltage.		_	_	true and B
					is the
					correct
					explanatio
					n of A
	a) Both A and B	b) Both A and B	c) A is true but B	d) A is false but B	a)
	are true and B is	are true but B is	is false	is true	
	the correct	not the correct			
	explanation of A	explanation of A			
109	Assertion (A): BJ	T is a current-control	lled device.	-	Both A
		Collector current ma		e current.	and B are
	, ,		• 1		true and B
					is the
					correct
					explanatio
					n of A
	a) Both A and B	b) Both A and B	c) A is true but B	d) A is false but B	a)
	are true and B is	are true but B is	is false	is true	
	the correct	not the correct			
	explanation of A	explanation of A			
110	Assertion (A): Ha	ll effect can measure	carrier concentratio	n.	A is true
	Justification (B):	Hall voltage is indep	endent of magnetic	field.	but B is
					false
	a) Both A and B	b) Both A and B	c) A is true but B	d) A is false but B	c)
	are true and B is	are true but B is	is false	is true	
	the correct	not the correct			
1					
	explanation of A	explanation of A			
111			egative resistance in	its V–I	Both A
111		explanation of A	egative resistance in	its V–I	Both A and B are
111	Assertion (A): Turning characteristics.	explanation of A	-		
111	Assertion (A): Turning characteristics.	explanation of A nnel diode exhibits n	-		and B are
111	Assertion (A): Turning characteristics.	explanation of A nnel diode exhibits n	-		and B are true but B
111	Assertion (A): Turning characteristics.	explanation of A nnel diode exhibits n	-		and B are true but B is not the correct explanatio
111	Assertion (A): Turcharacteristics. Justification (B):	explanation of A nnel diode exhibits n Tunnel diodes are w	idely used as microv	vave oscillators.	and B are true but B is not the correct explanatio n of A
111	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B	explanation of A nnel diode exhibits n Tunnel diodes are w b) Both A and B	c) A is true but B		and B are true but B is not the correct explanatio
111	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is	explanation of A nnel diode exhibits n Tunnel diodes are w b) Both A and B are true but B is	idely used as microv	vave oscillators.	and B are true but B is not the correct explanatio n of A
111	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct	explanation of A nnel diode exhibits n Tunnel diodes are w b) Both A and B are true but B is not the correct	c) A is true but B	d) A is false but B	and B are true but B is not the correct explanatio n of A
	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b)
111	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A	explanation of A nnel diode exhibits n Tunnel diodes are w b) Both A and B are true but B is not the correct	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanatio n of A
	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b)
	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b)
	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A The interface betw	b) Both A and B are true but B is not the correct explanation of A een an analog signal	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanation of A b)
	Assertion (A): Turcharacteristics. Justification (B): a) Both A and B are true and B is the correct explanation of A	b) Both A and B are true but B is not the correct explanation of A	c) A is true but B is false	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b)
112	a) Both A and B are true and B is the correct explanation of A The interface betw	b) Both A and B are true but B is not the correct explanation of A een an analog signal	c) A is true but B is false and a digital proces	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b) A/D converter
	a) Both A and B are true and B is the correct explanation of A The interface betw	b) Both A and B are true but B is not the correct explanation of A een an analog signal	c) A is true but B is false and a digital proces	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b) A/D converter b)
112	a) Both A and B are true and B is the correct explanation of A The interface betw	b) Both A and B are true but B is not the correct explanation of A een an analog signal	c) A is true but B is false and a digital proces c) Modulator ational circuit?	d) A is false but B is true sor is	and B are true but B is not the correct explanatio n of A b) A/D converter b) All of above
112	a) Both A and B are true and B is the correct explanation of A The interface betw	b) Both A and B are true but B is not the correct explanation of A een an analog signal	c) A is true but B is false and a digital proces	d) A is false but B is true	and B are true but B is not the correct explanatio n of A b) A/D converter b)

114	A basic S-R flip-flop can be constructed by cross-coupling which basic logic gates?						
	a) XOR or XNOR gates	b) AND or OR gates	c) AND or NOR gates	d) NOR or NAND gates	gates d)		
115	Which of the follow	wing is a asynchron	ous counter?		Ripple Counter		
	a) Ripple Counter	b) Johnson counter	c) Ring Counter	d) None of Above	a)		
116	A 32:1 Multiplexer	will have how man	y select lines?		5		
	a) 3	b) 4	c) 5	d) 32	c)		
117	The process of con	verting the analog s	ample into discrete f	Form is called	Quantizati on		
	a) Modulation	b) Multiplexing	c) Quantization	d) Sampling	c)		
118	One of the disadva	ntages of PCM is			It requires large bandwidth		
	a) It requires large bandwidth	b) Very high noise	c) Cannot be decoded easily	d) All of the above	a)		
119	A 4-bit synchronou		k frequency of 1 MI		125 kHz		
	a)250 kHz	b)125 kHz	c)500 kHz	d) 62.5 kHz	b)		
120	An AM signal has is the total transm		00 W and modulatio	n index = 0.5 . What	112.5 W		
	a)88.5 W	b) 100 W	c) 112.5 W	d) 125 W	c)		
121	_	input resistance is 1 what is the collector	$k\Omega$ and current gain current?	β = 100. If base	5 mA		
	a)2.5 mA	b) 5mA	c) 10 mA	d) 50 mA	b)		
122	A digital voltmeter percentage resolu	_	V and resolution of	1 mV. What is the	0.01%		
	a) 0.001%	b) 0.01%	c) 0.1%	d) 1%	b)		
123		cy deviation = 50 kl the modulation ind	Hz and maximum melex?	odulating frequency	5		
	a)2	b) 5	c) 10	d) 20	b)		
124	A channel has band What is the Shann	lwidth 4 kHz and Sl on capacity?	NR = 30 dB.		40 kbps		
	a) 40 kbps	b) 60 kbps	c) 100 kbps	d) 140 kbps	a)		
125	A baseband signal What is the Nyquis	has maximum frequest sampling rate?	ency 4 kHz.	1	8kHz		
	a)2 kHz	b) 4 kHz	c) 6 kHz	d) 8 kHz	d)		

126	In a series RLC cir		=1 H,	C=1 F.			1 rad/s
	What is the resonar						
	a) 0.5 rad/s	b) 1 rad/s		c) 2 rad/s	d) 5 rad	/s	b)
127	A moving-coil met	er has full-scale	defl	ection at 1 mA.			100 kΩ
				use it as 100 V volt	meter?		
	a) 100 kΩ	b) 10 kΩ		c) 1 kΩ	d) 1 MΩ	2	a)
128	A lossless transmis	sion line has Z0)=75	Ω.			Infinite
	If it is terminated with a short circuit, the VSWR is:						
	a)0	b) 1		c) infinite	d) 2		c)
129	of 8-point DFT is	nplex multiplica	ation	s involved in the dir	-	ıtation	64
	a) 8	b) 64		c) 16	d) 56		b)
130	The DFT X(k) of a		ence		1		{6, 2}
	a) {6, 2}	b) {4, 2}		c) {8, 4}	d) {2, 1	}	a)
131	The cross correlation	on of $x(n) = \{1$, 2.	$\frac{1}{1}$ and $h(n) = \{1$, 2 } is		{2,5,4,1}
	a) {1,4,5,2}	b) {2,5,4,1}	, ,	c) {1,2,1,1,2}	d) {1,3,5	5,2}	b)
132	The autocorrelation		2,1}		, , , , , , , ,	<u>.</u>	{2,5,2}
	a) {2,5,2}	b) {4,4,1}		c) {2,5,5}	d) {4,1,4	4}	a)
133	Anti-aliasing filter			-	-/ (-,-,	-)	before
		Ι.					down
							sampler
	a) before down	b) after down		c) before up	d) after	up	a)
	sampler	sampler		sampler	sampler		
134	Anti-imaging filter	is to be kept					after up sampler
	a) before down	b) after down		c) before up	d) after	up	d)
	sampler	sampler		sampler	sampler		
135	Match the theorem	s with their app	licati	ons:			A- 4, B-3,
							C-2, D-1
	A. Thevenin theor	rem		o find conditions fo			
				kimum power delive	ry to		
	B. Norton theorem	.		load	anca in		
	B. Norton medici	Ш		o calculate the responsible clement by conside			
				h source separately	img		
	C. Superposition	theorem		To simplify linear ne	tworks		
				single current source			
				stance			
	D. Maximum pov	ver transfer	4. T	o simplify linear ne	tworks		
	theorem			single voltage source	ce and		
		<u> </u>		stance			
			C-3,			B-3, C-2,	a)
	D-1	D-1		D-4	D-1		
136	Match Modulation	Types with the	ir cha	aracteristic:			A-1, B-3, C-2, D-4
	A. AM (Amplitud	le	1. V	Vide bandwidth, less	noise		
				nune			
	B. FM (Frequency	y Modulation)		imilar bandwidth ar	nd noise		
		·		nunity to FM			
136	theorem a) A- 4, B-3, C-2, D-1 Match Modulation A. AM (Amplitude Modulation)	b) A- 4, B-2, C D-1 Types with the	resi 4. T to a resi C-3, ir cha	stance To simplify linear nericing single voltage source stance c) A- 2, B-1, C-3, D-4 aracteristic: Vide bandwidth, less nune similar bandwidth ar	d) A- 2, D-1	B-3, C-2,	ŕ

	C. PM (Phase Mo		nois	Varrow bandwidth, n		
	D. PCM (Pulse Co Modulation)	ode		Converting analog sigo digital signals	gnals	
	a) A-1, B-2, C-3, D-4	b) A-1, B-3 D-4			d) A-2, B-3, C-1, D-4	b)
137	Match the following	ıg op-amp ci	rcuits w	ith their functions:		A-1, B-2, C-3, D-4
	A. Differentiator (circuit)		rate of	erates output propor change of input		
	B. Integrator (opcircuit) C. Comparator (o	_	integra	erates output propor l of input pares two voltages a		
	circuit) D. Voltage follow		outputs	s high/low according out voltage and according	gly	
	amp circuit)	-	voltage	(buffer)		
	a) A-1, B-2, C-3, D-4	b) A-1, B-3 D-4	s, C-2,	c) A-2, B-1, C-3, D-4	d) A-2, B-3, C-1, D-4	a)
138	Which statements a A. CMOS gates ha B. Early CMOS far C. Modern CMOS D. CMOS consume	ve higher no milies had hi is faster thar	gher del 1 TTL.	•	S.	A, B, C
	a) A only	b) A, B, C	only	c) A, B only	d) A, B, C, D	b)
139	C. FM bandwi	$idth = 2f_{m.}$ $dth = 2(\Delta f + f_{m.})$ dth depends	on mod	ulation index.		A, B, and C
	a)A only	b) B only		c) A and B only	d) A, B, and C	d)
140		~ ~		very low static pow pull-up or pull-dow	n network is OFF	Both A and B are true and B is the correct explanatio n of A
	a) Both A and B are true and B is the correct explanation of A	b) Both A a are true but not the corr explanation	B is	c) A is true but B is false	d) A is false but B is true	a)

141	A transmission line Ω is terminated with decimal places) see Ω .		6.25			
	a) 2.25	b) 4.25	c) 6.25	d) 8.25	c)	
142	input to the D/A co	erter is calibrated over onverter is 13A (in he	ex), the output (roun		3.07	
	a) 1.50	b) 1.60	c) 2.70	d) 3.07	d)	
143	The loop transfer function of a negative feedback system is $G(s)H(s) = \frac{K(s+11)}{s(s+2)(s+8)}$ The value of K, for which the system is marginally stable, is					
	a) 40	b) 80	c) 120	d) 160	d)	
144	B: A causal system	ms must have the co is one where the out puts, not future input	tput at any given tim			
	a) A is true and B is the correct justification of A	b) A is true and B is true but not the correct justification of B	c) A is True and B is False	d) A is False and B is True	a)	
145	B: The power ratin	er rating of a transis g of a transistor indi- e as heat without bein	cates the maximum			
	a) A is true and B is the correct justification of A	b) A is true and B is true but not the correct justification of B	c) A is True and B is False	d) A is False and B is True	a)	
146	electronic signals.	a transistor in electro		plify or switch		
	a) A is true and B is the correct justification of A	b) A is true and B is true but not the correct justification of B	c) A is True and B is False	d) A is False and B is True	b)	
147	is a diode.	etor device that acts	·	or electric current		
	a) A is true and B is the correct justification of A	b) A is true and B is true but not the correct justification of B	c) A is True and B is False	d) A is False and B is True	c)	

	T	T	T	T	
148	A: The function of an inductor is to oppose the change in current. B: An inductor is a passive electronic component typically made by winding a wire into a coil.				
	a) A is true and B is the correct justification of A	b) A is true and B is true but not the correct justification of B	c) A is True and B is False	d) A is False and B is True	b)
149	What is the process of increasing the sampling rate by a factor I?				Interpolati on
	a) Interpolation	b) Decimation	c) Sampling rate conversion	d) None of the mentioned	a)
150	A basic S-R flip-flop can be constructed by cross-coupling which basic logic gates?				NOR or NAND gates
	a) XOR or XNOR gates	b) AND or OR gates	c) AND or NOR gates	d) NOR or NAND gates	d)