Test Booklet No	
This booklet consists of 150 questions and pag	es.
RGUPET/2025/1004/1	

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

Full Mark	'ull Marks: 150								Tim	e: 3 H	ours
Roll No.											
Day and Da	ate of Ex	aminat	ion: _						 		_
Signature o	f Invigila	ator(s)									
Signature o	f Candid	ate									
General In	struction	g •									

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	The "Mission Sudarshan Chakra", recently launched by the Prime Minister of India, primarily relates to							
	a) a national renewable energy mission	b) a national digital currency mission	c) development of a multilayered air and missile defence system	d) a national mission to modernise Indian Railways	(c)			
2		itional mission being abay is related to the d		e Indian Institute of	Drone technolog y			
	a) Helicopters	b) Dairy technology	c) Drone technology	d) Artificial intelligence	c)			
3	North East India' to connect	s first underwater tun	nel project, announced	d in 2024, is proposed	Numaliga rh and Gohpur			
	a) Dibrugarh and Dhemaji	b) Jorhat and Majuli	c) Numaligarh and Gohpur	d) Guwahati and North Guwahati	c)			
4	Which of the following statements are correct? A. Canada hosted the 51 st G7 summit in 2025. B. Four players were honoured with the Khel Ratna Award 2025. C. Sweden was ranked first in Global Innovation Index 2024. D. Operation Sindoor was Launched by India to attack terrorist bases in Pakistan on 7 th May 2025.							
	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D			
5	Which of the followings are correct? A. Lip Butan has been appointed as the new CEO of Intel in March 2025 B. Shri C P Radhakrishnan has been appointed as the Vice President of India C. India's rank in the Human Development Index 2025 released by UNDP is 99 D. India has become the 2 nd largest road network in the World.							
	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only			
6	Which of the following sentences is false? A. Palk Strait joins India and Sri Lanka B. The Radcliffe Line is between India and Bangladesh C. The MacMohan Line separates India and China D. The Durand Line is between Iran and Afghanistan.							
	a) A, B	b) B, C	c) C, D	d) B, D	(d)			

7	Assertion (A): Eclipses do not occur on all full moon and new moon days. Reason (R): The moon revolves round the earth in an elliptical orbit.						
	a) A and R are true and R correctly explains A.	b) A and R are true but R does no explain A.	c) A is true R is false	d) R is true but A is false	(b)		
8	Right to equality is a-						
	a) fundamental right	b) social right	c) cultural right	d) legal right	(a)		
9		e book "Midnight's		T	Salman Rushdie		
1.0	a) Shakespeare	b) Leo Tolostoy	c) Salman Rushdie	d) R K Narayan	(c)		
10	Match the organi	izations with their he	eacquarters:				
	A. UNESCO	1.	New York				
	B. WHO		Paris				
	C. UNICEF	3.	Geneva				
	D. IMF	4.	Washington D.C.				
	4, D-1	b) A-2, B-3, C-1, D-4	c) A-2, B-4, C-3, D-1	d) A-1, B-3, C-2, D-4	(b)		
11	He said, "Happy new year!" The correct indirect speech of the above is-						
	a) He said the new year was happy.	b) He wished me a happy new year.	c) He said to me that happy new year.	d) I was wished a happy new year.	new year. (b)		
12	Identify the corre	ect sentence(s) from	the following.				
	A. One of my fri B. I don't know to C. It is a two-hou	ends is a doctor. nothing about her. ur journey.	yesterday's programme	e.			
	a) A, B	b) B, C	c) A, C	d) C, D	(c)		
13	"She drank the quantifier to fill		nt was there in the fl	ask." The appropriate	little		
	a) all	b) little	c) sour	d) few	(b)		
14	"a/ great /and/ reality/their/ theory/in/there/ disparity/is" The correct reordered meaningful sentence with the above jumbled words/phrases is-						
	Q. There is a gre	at theory and their re at disparity in their t sparity is in a theory	heory and reality.		in their theory and reality.		

	S. Their great the	ory is a reality a	nd in	disparity there.				
	a) P	b) Q		c) R	d) S	(b)		
15	The correct mate	h of synonyms a	nd an	tonyms is:		A-ii, B- iii, C-i,		
	A. Futile		i. He	elp		D-iv		
	B. Generic			ffective				
	C. Hinder		iii. I	ndividual				
	D. Inception		iv. T	ermination [additional content of the content of th				
	a) A-i, B-ii, C- iii, D-iv	b) A-iii, B-ii, C D-iii	:-iv,	c) A-iv, B-iii, C-i, D-ii	d) A-ii, B-iii, C-i, D-iv	(d)		
16	6 The total number of squares in the following figure is:							
	a) 24	b) 20		c) 22	d) 18	(c)		
17	Fill in the blank i	n the following j LHX ILJW				KLLV		
	a) KLLV	b) KLMX		c) JLLV	d) JLMX	a)		
18	Raghav introduce How Raghav and			son of the only brother	r of his father's wife.	cousin		
	a) brother	b) cousin		c) uncle	d) son-in-law	(b)		
19	Which two nur mathematically c	orrect?		terchanged to make $\div 8 - 24 = 12$	the given equation	6, 8		
	a) 6, 8	b) 6, 24		c) 3, 8	d) None	(a)		
20	If BANKER is co	oded as CAOKF	R, the	en how would LAWY	ER be coded?	MAXYF R		
	a) LBWZES	b) LBWYFR		c) MAXYFR	d) MAXZES	c)		
21		d either by think	ing th	every measurement, as through the sources of trmed as:				
	a) Random errors	b) Systematic errors		c) Cascading errors	d) Perpetual errors	b		

22	Hypothesis-driven research begins with a hypothesis. A hypothesis is a statement about the world that can be true or false, and whose truth is being tested.						
	a) A valid	b) A hypothesi	s is	c) A hypothesis	d) A	valid	
	hypothesis is based on 'that exists'	a positive conclusion	15	can never be tested	_	thesis must be	d
23	hypotheses?	C		could be considered decreases the odds of			
	disease. B. What is the best fertilizer to use to get large and tasty tomatoes? C. Macs are better than PCs. D. Briar's Aspirin cures headaches faster than RCS Aspirin.						
	a) A, B	b) A, B, C		c) A, D	d) B,	С	c
24	Relate the 'function or relationship' (A) and 'comment' (B) and select the appropriate answer A: Find how the speed of sound in air at fixed pressure depends upon air temperature. B: The control variable is temperature, and the response variable is sound speed.						
	a) Functional relationship is correct and the comment is true for the relationship	b) Functional relationship is incorrect but the comment is true for the relation	he ie	c) Functional relationship is correct but the comment is false for the relationship	d) No funct relati corre	either the	a
25	Relate 'sampling						
	A. Deliberate		i. Sa int	Method i. Sample collected as information received and survey progresses			
	B. Simple rando	om	he	imple drawn from a terogeneous group			Answer
	C. Stratified		pa	urposive selection of articular units			
	D. Sequential		ha	ery item in the popula s an equal chance of clusion	tion		
	a) A-iii, B-iv, C-ii, D-i	b) A-ii, B-iv, C D-i		c) A-i, B-iii, C-ii, D-iv	Ď-i	iii, B-ii, C-iv,	a
26	Number of obserwill be there betw			stribution is 1000. Ho	w mar	ny observations	Answer
	a) 500	b) 680		c) 720	d) 95	0	b

27	Which of the fo	ollowing are reasons for citing a paper?							
	A. use its ideas B. provides upo C. to adopt part D. to refer to da	definitions, terms in a Research coming facts regarding undergoing Research Question. /full methodology it adopted for a certain task. at a also used in Current Research.		Answer					
	a) A, B, C	b) B, C, D c) A, C, D d) A, B, D		c					
28	Scholars who wish to meet publication expectations mostly resort to a variety of techniques to increase their output and crank up their citation ranking, which are not considered ethical. Identify these techniques: A. Gift authorship B. Extensive experiments C. Salami Slicing D. Extensive referencing a)A, B, C b) A, B, D c) B, C, D d) A, C, D Match the references (APA 7 style):								
29	, , ,)	d					
	A. Journal Article B. Authored Book C. Webpage D. Edited Book Chapter	 i. Edwards, A. A., Steacy, L. M., Siegelman, N., Rigobo M., Kearns, D. M., Rueckl, J. G., & Compton, D. (2022). Unpacking the unique relationship betwee for variability and word reading development: Examining word- and child-level predictors of performance. <i>Journal of Educational Psychology</i>, 114(6), 1242–1256. https://doi.org/10.1037/edu00 ii. Levenson, H., Jinich, S., Vaz, A., & Rousmaniere, T. (2025). <i>Deliberate practice in emotionally focused couple therapy</i>. American Psychological Association https://doi.org/10.1037/0000436-000 iii. Zeleke, W. A., Hughes, T. L., & Drozda, N. (2020). Home–school collaboration to promote mind–bodhealth. In C. Maykel & M. A. Bray (Eds.), <i>Promote mind–body health in schools: Interventions for me health professionals</i> (pp. 11–26). American Psychological Association. https://doi.org/10.1037/0000157-002 iv. Taras, Z. (2024, May 30). <i>Situational irony can be futragic or even terrifying</i>. howstuffworks. https://entertainment.howstuffworks.com/arts/litersituational-irony.htm 	L. en set 00696 d ion.	Answer					
	a) A-i, B-ii, C-	b) A-ii, B-iii, C-iv, c) A-iii, B-ii, C-i, d) A-i, B-i	ii, C-iii,	a					
30	iv, D-iii Which one of the	D-i D-iv D-iv ne following refers to positive skewness?							
	a) Mean - Median - Mide	b) c) d) d) Mean Median Meda x	isdian Mode	c					

31	How much is the	e degree of fro	edom fo	r the following	data ta	hle?				
31	-				<u> </u>					
	S. No.	:	othesised mean _{Hu} = 578 kg.	$D_i = \left(X_i - \mu_{H_0}\right)$	1	D _i ²				
	5 6	572 57 8	578 578	6 0		86 0				
	7	570	578	-8		54		Answer		
	8	572	578	-б		36				
	9	596 544	578 578	18 -34	32 115					
	n=10		370		$\frac{\sum D_i^2 = 181}{\sum D_i^2}$					
		1)0			<i>≟</i> , <i>D</i> ; − 101					
	a) 8	b) 9		c) 10		d) 18		h		
								b		
32	Find out the Nul	l hypothesis fo	r the giver	ı table						
	S. No.	X, Hypot	hesised mean	$D_i = (X_i - \mu_{H_0})$	D_i^2					
		-	, = 578 kg.	, (•					
	5	572	578	-6	36					
	6 7	57 8	578 578	0 -8	0			Answer		
	8	570 572	578	−6 −6	64 36					
	9	596	578	18	324					
	10	544	578	-34	1156					
	n=10			$\sum D_i = -60$ $\sum D_i$	$D_i^2 = 1816$					
	a) $\mu H_0 = 578$ kg.	b) $\mu_{H_0} \neq 57$	8kg.	c) $\mu_{H_0} = -578$	8kg.	d) $\mu_{H_0} = \pm 578$	kg.	a		
33	What will be sur	n of the devia	tions of o	observations fr	om the	regression line	?	Answer		
	a) -∞	b) 0		c) +∞		d) undefined		b		
	O.05 of area O.	b) Assertion false but	ailed hype		odel at 9 is true ion is		s true on for	Answer		
	explains the	justification explains the		explain the	not	incorrect	IS	d		
	Assertion	Assertion		Assertion						
35	Match into pairs	for the Statis	tical metl	hod with appro	priate d	letails mention	ed:			
	Statistical method Details									
	A. Correlation i. Order 2, 3, 4,									
	B. Polynomial regression ii. More than two population on same									
		10510001011	characte		arutiOII (on buille				
	C. ANOVA			of homogeneit	tv					
						NC				
	TED. CHESQUARE	D. Chi square iv. Requires only two variables								

	a) A-i, B-ii, C- iii, D-iv	b) A-iv, B-i, C- D-iii	-ii,	c) A-iv, B-ii, C-i, D-iii	d) A-iii, B-i, C-ii, D-iv	b	
36	Match the follow		corre				
	B. Rate of Cher C. Increase the			ii Bond iii Lipid		Answer	
	a) A(i), B(ii), C(iii), D(iv)	b) A(ii), B(i), C(iv), D(iii)		c) A(iii), B(ii), C(i), D(iv)	d) A(ii), B(iii), C(i), D(iv)	(b)	
37	In a simple harm	onic motion, the	veloc	city of a particle is ma	ximum at:	Answer	
	a) Mean position	b) Extreme position		c) Halfway between mean and extreme	d) At all positions	(a)	
38	In a double-slit e to the fringe space			ince between slits is d	oubled, what happens	Answer	
	a) Fringe spacing halves	a) Fringe spacing doubles		c)Fringe spacing remains the same	d)Fringe spacing quadruples	(a)	
39	A block slides down a frictionless inclined plane. Which of the following statements is true?						
	a) Mechanical energy is not conserved	b) Potential endecreases, kine energy increase	etic	c) Kinetic energy decreases	d)Acceleration is zero	(b)	
40	Which of the following			oton in a vacuum?		Answer	
	a) It has mass but no energy	b) It has energy but no rest mas		c) It has rest mass and energy	d) It can be accelerated by a force	(b)	
41	Which of the following	lowing is diamag	netic	?	<u> </u>	Answer	
	a) CO ₂	b) O ₂		c) NO	d) O ₂ -	(a)	
42	Match the follow	 ving ligands with	their	denticity:		Answer	
	A. NH ₃ B. EDTA C. Oxalate D. Porphyrin i. Quadridentate iii. Monodentate iii. Hexadentate iv. Bidentate						
	a) A-ii, B-iii, C-iv, D-i	b) A-ii, B-iii, C D-iv	C-i,	c) A-iv, B-iii, C-ii, D-i.	d) A-ii, B-i, C-iv, D-iii	(a)	

43	In which of the fo	ollowing compo	unds is th	e metal-metal bon	iding present?	Answer	
	a) NaCl	b) ZnO	c)	Al ₂ O ₃	d) Cr ₂ Cl ₆	(d)	
44	A solution contai Calculate the osn		non-volati	le solute in 1 L of	water at 298 K.	Answer	
	a) 2.44 atm	b) 1.33 atm	c)	0.22 atm	d) 0.11 atm	(a)	
45	According to Her	nry's law, the so	lubility of	a gas in a liquid		Answer	
	a) Independent of pressure.	proportional to	pro	Inversely oportional to essure.	d) Exponential with pressure.	(b)	
46	$ \operatorname{If} f(x) = \begin{cases} \{ x - f(x) \\ f(x) = f(x) \end{cases} $	2)/(x — 2)}, :), otherwi	x ≠ 0 se			Answer	
	a) -1			0	d) does not exist	d	
47	$If y = x^5 - 5x^4$			e of $\frac{d^6y}{dx^6}$ is		Answer	
	a) 120 <i>x</i> – 120	b) 120	c)		d) cannot be evaluated.	c	
48	[a , b] to satisfy Rolle's theorem? A. f is continuous on closed interval[a , b]. B. f is differentiable on the open interval (a , b) C. $f(a) = f(b)$						
	D. $f(k) = 0$ for a) A and B	b) only D	$\frac{-[u,b]}{c}$	B and C	d) Only C	b	
49	A group which sa				1 5 5		
		b) Quotient gro			d) Normal group	a	
50		transpose matr	ix of M	and I is identity	matrix. Match the		
	A. M is idempore B. M is symmet C. M is skew-sy D. M is involuti	ric rmmetric on	i. $M = M^T$ ii. $M = -M^T$ iii. $M^2 = I$ iv. $M^2 = M$			Answer	
	a) A-iv, B-i, C-iii, D-ii	b) A-i, B-iv, D-iii	C-ii, c) D-		d) A-iv, B-ii, C-i, D- iii	c	
51	publicly.	yptography is co		_	the other is shared e than symmetric key	A is True but B is False	
	a) A is True but E False			c) Both A and B are True	d) Both A and B are False	(a)	

52	A) Digital signatures a B) A digital signature	· .	* *	ler authenticity.	A is False but B is True			
	a) A is True but B is False	b) A is False but B is True	c) Both A and B are True	d) Both A and B are False	(b)			
53	A) Phishing is a type of B) Firewalls can comp	•	•		A is True but B is False			
	a) A is True but B is False	b) A is False but B is True	c) Both A and B are True	d) Both A and B are False	(a)			
54	A) In symmetric key cryptography, the encryption and decryption keys are the same.B) Symmetric key cryptography is generally faster than public key cryptography.							
	a) A is True but B is False	b) A is False but B is True	c) Both A and B are True	d) Both A and B are False	(c)			
55	A) Kerberos is a network authentication protocol based on symmetric key cryptography.B) Biometric authentication is considered something the user knows.							
	a) A is True but B is False	b) A is False but B is True	c) Both A and B are True	d) Both A and B are False	(a)			
56	Match Communication	Modes with Exam	ples					
	A. Simplex	i Telep	hone		A-(iii),			
	B. Half Duplex	ii Wall	kie-talkie	B-(ii), C-				
	C. Full Duplex	iii Key	board-CPU	(i), D-(iv)				
	D Serial Link	iv Bit	by bit transfer					
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(ii), B-(iii), C-(i), D-(iv)	c) A-(iii), B-(ii), C-(i), D-(iv)	d) A-(iii), B-(ii), C-(i), D-(iv)	(c)			
57	Match Performance Te	rms with Definition	ns	<u> </u>				
	A Bandwidth	i Actua	al data transfer rate		A-(ii), B-			
	B Throughput	ii Ran	ge of available frequ	ency	(i), C- (iii), D-			
	C Latency	iii Del	(iv)					
	D Jitter	iv Vari	ation in packet delay	у				
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(ii), B-(iii), C-(i), D-(iv)	c) A-(iv), B-(i), C-(iii), D-(ii)	d) A-(ii), B-(i), C- (iii), D-(iv)	(d)			

58	58 Match Signal Types with Characteristics										
	A Analog		i Discre	ete in nature		A-(ii), B-					
	B Digital		ii Conti	(i), C-							
	C Binary		iii 0 and	d 1 only		(iii), D- (iv)					
	D Composite	iv Com	bination of sine way	ves	(17)						
	a) A-(i), B-(ii), C-	b) A-(ii), I	B-(i),	c) A-(iv), B-(i),	d) A-(iv), B-(ii),						
	(iii), D-(iv)	C-(iii),	, D-(iv)	C-(iii), D-(ii)	C-(iii), D-(i)	(b)					
59	Match Transmission Ty	<u> </u>									
	A. Analog Transmissi	on		inuous signal smission		A-(i), B-					
	B. Digital Transmission	on	ii. Send	ling bits as voltages		(ii), C- (iii), D-					
	C. Baseband		iii. Sing	gle channel, digital o	lata	(iv)					
	D. Broadband			tiple channels using dulation	;						
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(i), B C-(iv),	5-(ii), D-(iii)	c) A-(iv), B-(iii), C-(i), D-(ii)	d) A-(iv), B-(iii), C-(ii), D-(i)	(a)					
60	Match Transmission M	edia with U	ses								
	A. Twisted pair		i. Telep	Telephone lines							
	B. Coaxial Cable		ii. Cabl	(ii), C- (iv), D- (iii)							
	C. Optical Fiber		iii. Sho								
	D. Infrared		iv. High	n-speed backbone							
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(i), I C-(ii),	B-(iii), D-(iv)	c) A-(i), B-(ii), C-(iv), D-(iii)	d) A-(iv), B-(ii), C-(iii), D-(i)	(c)					
61	Match Error Detection	Methods w	ith Mech	nanism							
	A. Parity check		i. Adds	1 bit to detect error		A-(i), B-					
	B. CRC		ii. Uses	polynomial divisio	n	(ii), C- (iv), D-					
	C. Checksum		iii. Dete	ects & correct errors	S	(iii)					
	D. Hamming code			s segments of messa	age						
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(i), B C-(ii),		c) A-(iv), B-(ii), C-(iii), D-(i)	d) A-(i), B-(ii), C- (iv), D-(iii)	(d)					

62	Match Transmission E	Errors with C	lauses				
	A. Attenuation		i. loss c	of signal strength			
	B. Distortion		ii. Unwanted signal				A-(i), B-
	C. Noise		iii. Delay differences in components				(iii), C- (ii), D- (iv)
	D. Crosstalk		iv. Inte	rference from nearb nnel	у		(1V)
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(ii), I C-(iii)	B-(i), , D-(iv)	c) A-(iv), B-(ii), C-(iii), D-(i)		-(i), B-(iii), C-(ii), D-(iv)	(d)
63	Match Modulation with Application						
	A. AM		i. High	quality audio			
	B. FM		ii. Radi	o broadcasting			A-(ii), B- (i), C-
	C. PM		iii. Spe	cial digital systems			(iii), D-
	D. QAM		iv. DSI	., Wi-Fi			(iv)
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(i), B C-(iv),	B-(ii), , D-(iii)	c) A-(iv), B-(ii), C-(iii), D-(i)	-	-(ii), B-(i), C- iii), D-(iv)	(d)
64	Type Questions here f	or assertion	and justi	fication			
	A. IEEE 802.3		i. Bluetooth				A-(ii), B-
	B. IEEE 802.11		ii. Ethernet iii. Wireless LAN			(iii), C- (i), D-(iv)	
	C. IEEE 802.15						
	D. IEEE 802.16		iv. WiM	ViMAX			
	a) A-(i), B-(ii), C- (iii), D-(iv)	b) A-(ii), I C-(i), I		c) A-(iv), B-(ii), C-(iii), D-(i)		-(iv), B-(iii), C-(ii), D-(i)	(b)
65	In a simplex channel waximum data rat				s, what	is the	49.9 kbps
	a) 25 kbps	b) 50 kbps	8	c) 49.9 kbps	d) 30) kbps	(c)
66	Which mode of comm that work alternate	ely with serve	er?	,	wiping	machines	Half Duplex
67	a) Simplex	b) Half Du		c) Full Duplex		rallel	(b)
67	A digital signal of 8 le	?					3000 bps
60	a) 1000 bps	b) 2000 bp		c) 3000 bps		000 bps	(b)
68	In Hamming code, if to of redundant bits r		iciigin is	/ DIIS, WHAT IS THE I	mımı	ını number	4
	a) 3	b) 4		c) 5	d) 6		(b)
69	If a signal-to-noise rat	io is 20 dB ,	what is t	he SNR in linear sc	ale?		100
	a) 10	b) 20		c) 50	d) 10	00	(d)

70	Match dataset with its population standard deviation.						
	A. {5,5,5,5}			i. 1			
	B. {2,4,6,8}			ii. √ <i>5</i>			Answer
	C. {10,20,30,40}		iii. 0				
	D. Standard normal	random varia	ble Z	iv. 5√5			
	a) A-i, B-ii, C-iii, D-iv	b) A-iii, B-ii, D-i	C-iv,	c) A-ii, B-iii, C-iv, D-i		B-iii, C-ii,)-i	(b)
71	Type Questions here for matching pairs:						
			i. 2				
	$A. \int_0^{\pi} \sin x \ dx$						
	B. $\int_0^1 x^2 dx$		ii. $\frac{1}{3}$				Answer
	C. $\int_0^{1\infty} e^{-x} dx$		iii. $\frac{\pi}{2}$				
	D. $\int_0^{\pi} \cos^2 x dx$		v. 1				
	a) A-i, B-ii, C-iii, D-iv	b) A-ii, B-iii, D-i	, C-iv,	c) A-ii, B-i, C-iv, D-iii		B-iii, C-ii, D-i	(c)
72	Type Questions here for matching pairs:						
	A. Binomial(n,p)	interval	(often l	s of rare events in fi imit of Binomial)			Answer
	B. Poisson(λ)	ii. Discrete Bernoul		number of independ	lent		
	C. Normal(μ , σ^2)			nstant density on [0,	,1]		
	D. Uniform(0,1)	iv. Continu distribut		nmetric bell-shaped			
	a) A-ii, B-i, C-iv, D- iii	b) A-i, B-i iii, D-ii		c) A-iv, ,B-iii, C- ii, D-i		iii, B-ii, C-i,)-iv	(a)
73	Match the normal form		•	*	1		
	A. BCNF	i. No function		•			
	B. 4NF C. 3NF	ii. No transitive dependency iii. No multi-valued dependency					Answer
	D. 2NF			nt is a candidate key	V		
	a) A-ii, B-iii, C-i, D-iv	b) A-iv, B- ii D-i		c)A-iii, B-i, C-ii, D-iv	d) A-	i, B-iii, C-ii, D-iv	b) A-iv, B-iii, C-ii D-i

74 Match the violation examples with the NF required:							
	A. Student has multiplied independently of s		stored	i. 3NF			
	B. City depends on Zi attribute)		n-key	ii. 4NF			Answer
	C. Subject depends on composite key	ly on part	of	iii. 2NF			
	a) A-ii, B-i, C-iii	b) A-ii, B	-iii, C-i	c) A-iii, B-i, C-ii	d) A-	-i, B-iii, C-ii	a) A-ii, B-i, C-iii
75	75 Match the commands with their language type:						
	A. CREATE	i. DDL	DDL				
	B. INSERT		ii. DMI				Answer
C. DROP			iii. DCI				
	a) A-i, B-i, C-ii	b) A-ii, B	-i, C-i	c) A-i, B-ii, C-i	d) A-	-ii, B-ii, C-i	c) A-i, B- ii, C-i
76	Match the JOIN with it	s output:					
	A. CROSS JOIN	i. Carte	i. Cartesian product (all combinations)				
	B. NATURAL JOIN	ii. Joins	a table v	with itself			Answer
	C. SELF JOIN		s on colu matically	mns with same nam	ne		
	a) A-i, B-ii, C-iii	b) A-iii, E	B-i, C-ii	c) A-ii, B-iii, C-i	d) A	-i, B-iii, C-ii	d) A-i, B- iii, C-ii
77	Match the following qu	ery with it	s purpose	2:			
	A. SELECT dept, MAX FROM emp GROUP BY dept;	(salary)	_	oyees earning above rage salary	e		
				nest salary in each artment			Answer
	C. SELECT * FROM en WHERE dept IN (S dept FROM emp GROUP BY dept HAVING COUNT(*)	mp SELECT > 5);	with	ployees in departme n more than 5 people			
	a) A-ii, B-i, C-iii	b) A-iii, E	B-ii, C-i	c) A-i, B-iii, C-ii	d) A-	-ii, B-i, C-iii	a) A-ii, B-i, C-iii

78	Match the object with	its lir	nitation:			
	A. View	i. M	lay slow down i	updates/inserts		
	B. Index	ii. R	Requires extra st	torage space		Answer
	C. Sequence	iii. I	May have gaps	if transactions rollba	ack	
	a) A-i, B-iii, C-ii	b) A	A-ii, B-i, C-iii	c) A-iii, B-ii, C-i	d) A-i, B-ii, C-iii	d) A-i, B- ii, C-iii
79	Match the index type with storage/implementation:					
	A. Clustered Index		i. Stores values	s of multiple column	ns	
	B. Non-clustered Inde	ex	ii. Multiple all	owed, separate struc	cture	Answer
	C. Composite Index		iii. Only one p	er table		
	D. Bitmap Index		iv. Uses bitma	ps for column value	s	
	a) A-iii, B-ii, C-i, D- iv	b) A	A-iii, B-i, C- iv, D-ii	c) A-ii, B-iii, C-i, D-iv	d) A-i, B-iii, C-ii, D-iv	a) A-iii, B-ii, C-i, D-iv
80	Match subclass/superc	lass s	scenarios with r	 elational mapping:		
	A. Total Participation Subclass B. Partial Participatio		ii. merge sub	ubclass table oclass with superclass	ss or	
	Subclass C. Attribute of Superc	class		parate table superclass table		Answer
	D. Attribute of Subcla		iv. Separate t	table for subclass wi		
			Primity	out out out out out		
	a) A-ii, B-i, C-iv, D- iii	b) A	A-iv, B-ii, C- iii, D-i	c) A-iii, B-iv, C- i, D-ii	d) A-iv, B-iii, C- ii, D-i	b) A-iv, B-ii, C- iii, D-i
81	Match relationship wit	h attı	ributes to relation	onal design:		
	A. Many-to-Many with Attributes B. One-to-Many with Attributes		i. Create a new table with foreign keys and include relationship attributesii. Include attributes as columns in "many" side table			Answer
	C. One-to-One with Attributes iii. Use foreign key(same table; attributed table or separate cardinality				that	
	D. Recursive Relationship with Attributes			ibutes as columns in the entity tables	1	

	a) A-iii, B-iv, C-i	i, D-	b) A-ii, B-i, C-iv, D-iii	c) A-i, B-ii, C-iv, D-iii		v, B-iii, C- D-i	c) A-i, B- ii, C-iv, D-iii
82	Match the norma		with the key conce transitive dependen				
	B. 4NF		multi-valued depe				Answer
	C. 3NF		iii. Every determinant is a candidate key				
	a) A-ii, B-iii, C-i		b) A-iii, B-ii, C-i	c) A-iii, B-i, C-ii	d) A-i	, B-iii, C-ii	b) A-iii, B-ii, C-i
83	A table has StudentID - StudentName , StudentID - Skill . This table:						Answer
	a) Is in 3NF but violates 4NF		b) Is in BCNF	c) Is in 1NF but not in 2NF	va	s no multi- lued pendencies	a) Is in 3NF but violates 4NF
84	Which of the following Normal Form is violated in this: TeacherID - Subject, Subject - TeacherID						Answer
	a) 2NF		b) 4NF	c) BCNF	d) 3N	F	c) BCNF
85	Orders Table: OrderID CustI	Eas We Sou Eas We	t st uth t				Answer
		VT(DIS ΓCOU	`	gion) FROM Orders	s); d) No	ne	a) C1 only

	2 Sneha IT	60000			
	3 Raj IT	75000			
	4 John HR	55000			
	5 Priya Sales	45000			
	QUERY:				
	SELECT Dept, Name,	Salary			
	FROM Employee e	ECTALLY (C.1)			
	WHERE Salary = (SEI FROM Empl	· · · · · · · · · · · · · · · · · · ·			
	WHERE Dep				
		F -//			
	What will be the outpu	ıt?			
	a) (IT, Raj, 75000)	b) (HR, Amit,	c) (HR, John,	d) Error due to	c) (HR,
	only	50000), (IT,	55000), (IT,	correlated	John,
		Sneha,	Raj, 75000),	subquery	55000),
		60000), (Sales, Priya,	(Sales, Priya, 45000)		(IT, Raj, 75000),
		45000)	43000)		(Sales,
		.2000)			Priya,
					45000)
0.7	XXII.1 0.1 0.11				T
87	Which of the following	statements about B	ayesian networks at	e correct?	Variable eliminati
					on is
					used to
					determin
					e
					condition
					al
					probabilit ies
	a) Variable	b) Gibbs	c) Variable	d) Rejection	105
	elimination is an	sampling is	elimination is	sampling is	
	approximate	an exact	used to	not an	c
	inference	inference	determine	approximate	C
	algorithm	algorithm	conditional	inference	
88	You are training a Radi	al Basis Function (F	probabilities RBF) Support Vector	algorithm r Machine (SVM)	То
		where σ^2 represents			prevent
	` =- /		the variance of the	KDI, KEHIRI' MHIRU	overfittin
	of the following sta	tements is correct?			g, y
					should be
					decreased
	a) To prevent	b) To prevent	c) γ has no	d) When γ is	•
	overfitting, γ	overfitting, γ	predictable	decreased, the	
	should be	should be	impact on	number of	
	decreased.	increased.	overfitting.	support	a
				vectors	
				decreases, indicating the	
				chosen value	
1	İ	1	l .	J	1

				likely correspond to overfitting		
89	What is the process of standard deviation		hat they have a mea	n of 0 and a	Standardi zation	
	a) Dimensionality reduction	b) Normalization	c) Regularization	d) Standardizatio	d	
90	Which algorithm is employed to reduce the discrepancies between predicted and actual outputs in supervised learning?					
	a) Decision Tree	b) Gradient Boosting	c) K-means Clustering	d) Principal Component Analysis (PCA)	b	
91	Any decision tree that	sorts n elements has	height		$\Omega(n)$	
	a) Ω(n)	b) Ω(lgn)	c) $\Omega(nlgn)$	d) Ω(n2)	a	
92	 Select the correct statement(s): A. Time-sharing systems allow multiple remote users to run jobs on the computer at once, such as querying a big database. B. Multitasking refers to the execution of multiple tasks (e.g., processes, programs, threads) at the same time. C. A batch system is one that processes routine jobs without any interactive user present, such as claims processing in an insurance company. D. Real-time systems prioritize tasks with strict timing requirements, such as controlling traffic lights or medical devices. 					
	a) All statements (A, B, C, and D) are TRUE.	b) Only statements A, B, and C are TRUE.	c) Only statements A and B are TRUE.	d) Only statements A, C, and D are TRUE.	a	
93	B. Paging is a memory fixed-size blocks ca frames.C. Fragmentation occur.	ows a computer to usesses than physically management scheralled pages and virtuars when memory is difficult to allocate spection.	memory can accomme that divides physical memory into condivided into small, pace for large process	ical memory into responding page non-contiguous sees, and can be	Only statement s A, B, and C are TRUE.	

	a) All statements (A, B, C, and D) are TRUE.	b) Only statements A, B, and C are TRUE.	c) Only statements A and B are TRUE.	d) Only statements B and C are TRUE.	b	
94	 Select the correct statement(s): A. Pages are fixed-size blocks of virtual memory that are mapped to corresponding frames in physical memory during the paging process. B. Frames are contiguous blocks of physical memory allocated to store pages, and their size is determined by the operating system's page size. C. The Process Control Block (PCB) contains information such as the process state, program counter, and memory allocation details, including page tables. D. Pages and frames must always be of different sizes to ensure efficient memory utilization in a paging system. a) All statements (A, b) Only c) Only d) Only 					
	a) All statements (A, B, C, and D) are TRUE.	b) Only statements A, B, and C are TRUE.	c) Only statements A and B are TRUE.	d) Only statements B and C are TRUE.	b	
95	Select the correct statement(s): A. Mutual exclusion ensures that only one process can access a shared resource or critical section at a time, preventing race conditions in concurrent processing. B. In concurrent processing, mutual exclusion can be achieved using locks or semaphores to synchronize access to shared resources. C. Mutual exclusion is not necessary in systems where processes do not share any resources, as there is no risk of data inconsistency. D. Implementing mutual exclusion always guarantees a deadlock-free system in concurrent processing environments.					
	a) All statements (A, B, C, and D) are TRUE.	b) Only statements A, and C are TRUE.	c) Only statements B and C are TRUE.	d) Only statements A, B, and C are TRUE.	d	
96	Select the correct statement(s): A. A critical region is a section of code in a concurrent program where a shared resource is accessed, and only one process can execute it at a time to avoid conflicts. B. Critical regions are typically protected using synchronization primitives like mutexes or semaphores to enforce mutual exclusion. C. Any program segment can be designated as a critical region without considering whether it accesses shared resources. D. Critical regions always result in increased execution time due to mandatory synchronization, regardless of the system workload.					
	a) All statements (A, B, C, and D) are TRUE.	b) Only statements A, B, and C are TRUE.	c) Only statements A and B are TRUE.	d) Only statements A and C are TRUE.	С	

97	Select the correct statement(s): A. Locks are used in concurrent programming to ensure that only one process can access a critical section at a time by acquiring and releasing the lock. B. The unlock operation releases a lock, allowing other waiting processes to acquire it and proceed with their critical section execution. C. Locks can be implemented without any mechanism to handle deadlocks, as they are inherently safe in all concurrent systems. D. Unlocking a lock that has not been previously locked by the same process will always result in a system crash. a) Only statements C b) Only c) Only d) Only and D are TRUE. statements A, statements B statements A B, and C are and B are					
		B, and C are TRUE.	and C are TRUE.	and B are TRUE.	d	
98	Select the correct statement(s): A. CPU scheduling determines which process in the ready queue is allocated the CPU next, aiming to optimize throughput and reduce waiting time. B. I/O scheduling manages the order in which I/O requests are serviced, prioritizing based on factors like response time and fairness to improve disk or network performance. C. CPU scheduling and I/O scheduling are identical processes, as both deal with allocating resources to processes in a similar manner. D. I/O scheduling can be bypassed in systems where processes do not perform					
	any input/output op a) Only statements A and B are TRUE.	b) Only statements A, B, and C are TRUE.	c) Only statements B and C are TRUE.	d) Only statements B and D are TRUE.	a	
99	Select the correct stater A. Resource schedulin memory, and I/O de B. Resource schedulin over-allocation and C. Resource schedulin devices which are n D. Dynamic resource s changing workload	g involves allocating evices, to processes g ensures efficient udeadlocks through pg is only applicable nanaged separately. Incheduling adjusts a	based on their prior utilization of resource proper management to CPU and memor	ity and availability. ees by preventing techniques. y, excluding I/O ne based on	Only statement s A, B, and D are TRUE.	
	a) Only statements A, B, and C are TRUE.	b) Only statements A, and D are TRUE.	c) Only statements A and B are TRUE.	d) Only statements A, B, and D are TRUE.	d	
100	Select the correct statement(s): A. A deadlock occurs when two or more processes are indefinitely blocked, each waiting for a resource held by another, which can be prevented by resource ordering in scheduling algorithms. B. Scheduling algorithms, such as Round Robin, can directly resolve deadlocks by prioritizing processes based on their waiting time. C. Deadlock prevention techniques, like the banker's algorithm, are integrated into scheduling algorithms to ensure safe resource allocation. D. Scheduling algorithms have no influence on deadlock occurrence, as deadlocks are solely dependent on resource management policies.					

	a) Only statements A, B, and C are TRUE.	b) Only statements B and D are TRUE.	c) Only statements A and C are TRUE.	d) Only statements B and C are TRUE.	С	
101	 Select the correct statement(s): A. The Banker's algorithm prevents deadlocks by ensuring that resource allocation only occurs if the system remains in a safe state, where all processes can complete. B. The conditions for deadlock include mutual exclusion, hold and wait, no preemption, and circular wait, all of which must be present simultaneously. C. The Banker's algorithm can handle deadlocks after they occur by terminating processes to release resources, similar to deadlock detection and recovery. D. A deadlock can be avoided if any one of the four necessary conditions is eliminated, making the Banker's algorithm sufficient on its own to prevent all deadlocks. 					
	a) Only statements B and C are TRUE.	b) Only statements A and B are TRUE.	c) Only statements A, B, and C are TRUE.	d) All statements (A, B, C, and D) are TRUE.	b	
102	= [P1: [3, 2, 1], P2: [1, 1, 0], P2: [1, 0, 3]	P3, P4) and 3 resour owing conditions: A [2, 1, 2], P3: [2, 2, 1], P3: [1, 1, 0], P4:	ce types (A, B, C) revailable = [1, 1, 0], 1], P4: [1, 3, 1]], and [0, 1, 1]]?	emains in a safe Maximum Demand d Allocated = [P1:	Calculate the Need matrix as [P1: [2, 1, 1], P2: [1, 1, 1], P3: [1, 1, 1], P4: [1, 2, 0]], determin e a safe sequence [P2, P4, P1, P3], and compute the final Available vector as [4, 4, 3] after all processes complete.	
	a) Calculate the Need matrix as [P1: [2, 1, 1], P2: [1, 1, 1], P3: [1, 1, 1], P4: [1, 2, 0]], determine a safe sequence [P2, P4, P1, P3], and compute the final Available vector	b) If P3 requests [1, 0, 0], grant the request, update Available to [0, 1, 0], and confirm a safe sequence [P2, P1, P3,	c) Analyze the total resource capacity as [4, 4, 2] and total Need as [5, 5, 3], concluding that the system is always safe	d) Add a new process P5 with Maximum Demand [2, 1, 1] and Available [0, 0, 0], and allocate [1, 0, 0] to P5	a	

	as [4, 4, 3] after all processes complete.	P4] without recomputing Need.	regardless of allocation.	immediately to maintain a safe state.	
103	Which of the following	statements about v	irtual memory is con	rect?	Virtual memory allows programs to use more memory than the physical RAM installed in the system.
	a) Virtual memory increases internal fragmentation by allocating memory in large blocks.	b) Virtual memory allows programs to use more memory than the physical RAM installed in the system.	c) Virtual memory cannot use disk storage as part of the address space.	d) Virtual memory eliminates the need for mapping logical addresses to physical addresses.	b
104	In a paging-based mem memory of 64 KB, following statement	and logical address			Internal fragment ation occurs because a process may not fully use the last page allocated to it.
	a) Paging completely eliminates both internal and external fragmentation.	b) Internal fragmentatio n occurs because a process may not fully use the last page allocated to it.	c) External fragmentatio n arises frequently because fixed-size pages cause memory to become scattered.	d) The page table size decreases as the page size decreases because fewer pages are needed.	b

105	Which of the following exclusion and critic	a) Mutual exclusion b) Critical c) Disabling d) A critical					
	a) Mutual exclusion allows multiple processes to simultaneously execute in their critical regions to maximize resource utilization.	b) Critical regions require processes to wait indefinitely to ensure fairness in access to shared resources.	c) Disabling interrupts is an ineffective method to guarantee mutual exclusion in both uniprocessor and multiprocess or systems.	d) A critical region is a section of code where shared resources are accessed, and only one process can execute in its critical region at any time to avoid race conditions.	d		
106	Consider a system with requires a maximum the following condi	n of 3 resources. Us	ing the Banker's alg	orithm, which of	Answer		
	a) The system has at least 3 available resources at the start, as $7 - 5 + 1 = 3$.	b) The total number of resources R s hould satisfy R≥su m of maximu m needs for all processes combined.	c)The system can be safe if minimum of 15 resources are available simultaneousl y.	d)The system is safe if the total available resources R sa tisfy R≥m×(n −1)+1, where m is the maximum demand per process, and n is the number of processes.	d		

107	Which of the following	g types of polymorph	hism is supported by	/ C++?	Answer		
	a) Static and Dynamic	b) Implicit and Explicit	c) Compile-time and Runtime	d) Both a and c are correct	(d)		
108	What happens if an ex-	ception is thrown bu	t not caught in C++	?	Answer		
100	a) The program terminates abnormally	minates will hang runs skips the error ormally indefinitely normally					
109	What is the main advantage of using inheritance?						
	a) Reduces execution time	b) Simplifies memory management	c) Promotes code reuse and modularity	d) Increases file size	(c)		
110	What is required for a	function to exhibit d	ynamic polymorphi	sm?	Answer		
	a) It must be declared as static	b) It must be declared as inline	c) It must be a virtual function in the base class and overridden in the derived class	d) It must be overloaded in the same class	(c)		
111	What is the output type	e of the malloc()	function in C?		Answer		
	a) int	b) void*	c) char	d) int*	(b)		
112	Which of the following	g best defines function	on overloading?		Answer		
	a) Having multiple base classes	b) Reusing code in multiple files	c) Having multiple functions with the same name but different parameters	d) Inheriting properties from another class	(c)		
113	What is the main purpo	ose of using structur	es in C?		Answer		
	a) To allocate memory dynamically	b) To group variables of different data types under one name	c) To hide data from other functions	d) To perform arithmetic operations	(b)		
114	What will happen if yo pointer?	ou try to access a me	emory location throu	igh an uninitialized	Answer		
	a) It will store zero	b) It will give a compilation error	c) It will access the correct value	d) It may cause undefined	(d)		

				behavior or a			
				crash			
115	What are tokens in C?			<u> </u>	Answer		
	a) Reserved memory spaces	b) Predefined functions	c) The smallest individual units in a C program	d) Error messages	(c)		
116	Which of the following	best distinguishes		ruct in C?	Answer		
	a) A union can only hold integer data	b) All members of a union share the same memory location	c) Structures are faster than unions	d) Unions cannot have more than two members	(b)		
117	A: Assertion : A class i B: Justification : Const		allows the creation o	of multiple	Answer		
	a) Both A and B are true, and B is the correct explanation of A.	b) Both A and B are true, but B is not the correct explanation of A.	c) A is true, but B is false.	d) A is false, but B is true.	(a)		
118	A: Assertion: If a class has a virtual destructor, it ensures proper destruction of derived class objects via base class pointers.B: Justification: Virtual destructors allow the program to call the destructor of the base class only.						
	a) Both A and B are true, and B is the correct explanation of A.	b) Both A and B are true, but B is not the correct explanation of A.	c) A is true, but B is false.	d) A is false, but B is true.	(c)		
119	A: Assertion: The scanf() function can be used to read strings in C. B: Justification: scanf() automatically adds a null character at the end of the input string.						
	a) Both A and B are true, and B is the correct explanation of A.	b) Both A and B are true, but B is not the correct explanation of A.	c) A is true, but B is false.	d) A is false, but B is true.	(a)		
120							
	a) Both A and B are true, and B is the	b) Both A and B are true, but B is not the	c) A is true, but B is false.	d) A is false, but B is true.	(a)		

	correct	correct						
	explanation of A.	explanation						
		of A.						
121	A: Assertion : A class c	an have only one de	estructor.					
	B: Justification: You m	ust explicitly call a	destructor to destroy	an object.	Answer			
	a) Both A and B are	b) Both A and B	c) A is true, but	d) A is false, but				
	true, and B is the correct explanation of A.	are true, but B is not the correct explanation of A.	B is false.	B is true.	(c)			
122	A: Assertion: Template functions are instantiated only when they are called in the program.							
	B: Justification: Templ function calls.							
	a) Both A and B are true, and B is the correct explanation of A.	b) Both A and B are true, but B is not the correct explanation of A.	c) A is true, but B is false.	d) A is false, but B is true.	(b)			
123	Assertion (A): Confided disclosed to unauther Reason (R): Confidentiathey are not permitted.	orized users. ality is violated if an			Both A and R are true, and R is the correct explanatio n of A			
	a) Both A and R are true, and R is the correct explanation of A	b) Both A and R are true, but R is not the correct explanation of A	c) A is true, but R is false	d) A is false, but R is true.	a) Both A and R are true, and R is the correct explanati on of A			
124	Assertion (A): In information security, assumptions about trusted components must be continuously evaluated. Reason (R): A component trusted today may become vulnerable tomorrow due to new threats or exploits.							
	a) A is false, but R is true	b) Both A and R are true, but R is not the correct explanation of A	c) A is true, but R is false	d) Both A and R are true, and R is the correct explanation of A	n of A D			
125	Assertion (A): Human security. Reason (R): Technical breaches happen on	controls such as fire	ewalls and encryption		A is true, but R is false			

	a) Both A and R are true, and R is the correct explanation of A	b) Both A and R are true, but R is not the correct explanation of A	c) A is true, but R is false	d) Both A and R are false	С
126	Assertion (A): Integrity unauthorized manner Reason (R): The Bell-L "read down."	•			A is true, but R is false
	a) Both A and R are true, and R is the correct explanation of A	b) Both A and R are true, but R is not the correct explanation of A	c) Both A and R are false	d) A is true, but R is false	D
127	In information security	, what does assuran	ce primarily refer to	·	Providing confidence that security goals are met through testing, verification, audits, and monitoring.
	a) Guaranteeing zero defects in software through encryption	b) Providing confidence that security goals are met through testing, verification, audits, and monitoring	c) Assigning trust levels to users based on assumptions	d) Ensuring confidentialit y only, regardless of integrity and availability	В
128	What is the primary di		l ultiprogramming and	d multitasking?	Multipro grammin g manages multiple jobs in memory, while multitask ing adds CPU time-sharing.
	a) Multiprogramming uses multiple CPUs, while	b) Multiprogram ming supports	c)Multiprogrammi ng manages multiple jobs	d)They are identical terms.	C C

	multitasking uses one.	multiple users, while multitasking does not.	in memory, while multitasking adds CPU time-sharing.					
129	Which of the following is <i>not</i> typically considered a phase of the System Development Life Cycle (SDLC)?							
	a) Requirements analysis	b) System design	c) Implementation (coding)	d) System conversion	D			
130	Which statement best des	cribes the Waterfall n	nodel?		It is a linear-sequential model where each phase must complete before the next begins.			
	a) It is iterative and risk-driven with repeated cycles	b) It is a linear- sequential model where each phase must complete before the next begins.	c) It relies on building throwaway prototypes to discover requirements.	d) It emphasizes object-oriented incremental delivery.	С			
131	What is the primary adva		odel over Waterfall?		It treats risk assessmen t explicitly and iteratively in each cycle.			
	a) It eliminates the need for requirements documentation.	b) It treats risk assessment explicitly and iteratively in each cycle.	c) It guarantees zero defects at release.	d) It requires fewer customer interactions.	В			
132	Which scheduling algo		y lead to starvation?		Shortest Job First (SJF)			
	a) First-Come, First- Served (FCFS)	b) Shortest Job First (SJF)	c)Round Robin (RR)	d) All of the above	В			
133	Which metric is commonly used to measure testing effectiveness in terms of how much of the program's code has been exercised by tests?							
	a) Defect density (defects per KLOC)	b)Cyclomatic complexity	c) Test coverage	d) Mean Time to Repair (MTTR)	С			
134	What do the Agile Man	ifesto principles pri	marily emphasize?		Customer collabora tion,			

								working software, respondin g to change, and valuing individua ls and interactions
	a) Following strict processes and comprehensive documentation over flexibility	collal work softw respo chang valuin indivi	rare, nding to ge, and	pla cor neg bef dev	Extensive Front nning are a stract gotiation fore velopmen gins	ad	Maximizing tool usage and minimizing human involvement in software development	В
135	Which of the following formal specification	-	-		eanroom	appro	ach emphasizes	To reduce the introducti on of defects during developm ent and improve reliability
	a) To eliminate the need for testing completely	of durin devel	defects g opment improve	coc ski	speed u ling b pping cumentati	рy	To allow developers to focus only on user interface design	В
136	Which of the following metrics is most commonly used to measure the <i>logical</i> complexity of code and estimate the number of test cases required?							
	a) Lines of Code (LOC)	b) Mea Betw Failu (MTI	een res	c) Poi	Functionts	on d)	Cyclomatic Complexity	D
137	· /						Answer	

	a) A-i, B-ii, C-iii, D-iv	b) A-iv, B-i C-ii, D-i		c) A-i, B-iii, C-iv, D-ii	d) A-ii, B-i	iv, C-i, D-iii	(b)
138	Match correctly the fo	ollowing:					
	A. Echo request/repl	у		i. Router signa can't be delive			
	B. Destination unreachable			ii. Loop preventi	ion		Answer
	C. TTL exceeded			iii. Ping			
	D. Redirect			iv. Router sugge path	ests better		
	a) A-ii, B-iii, C-i, D-iv	b) A-i, B-ii iii, D-iv		c) A-iii, B-i, C-ii, D-iv	d) A-iv, B-	i, C-ii, D-iii	(c)
139	Match the following v	vith regard to	app	lication layer:			
	A. HTTP		i. V	Web browsing			
	B. FTP		ii. I	P address allocati	Answer		
	C. DNS		iii. File transfer				
	D. DHCP		iv. Name resolution				
	a) A-i, B-ii, C-iii, D-iv	b) A-i, B-iv C-iii, D-		c) A-ii, B-iv, C-ii, D-i	d) A-i, B-ii	ii, C-iv, D-ii	(d)
140	Match the following p	pair correctly	:				
	A. Socket()		i. (Creates socket end	lpoint		
	B. Bind()		ii. Assigns address/port				Answer
	C. Listen()			Prepares for connections	incoming		THISWCI
	D. Accept()		iv. Accepts a connection request				
	a) A-iv, B-iii, C-ii, b) A-ii, B-i D-i C-iv, D			c) A-i, B-ii, C- iii, D-iv	d) A-ii, B-i	i, C-iv, D-iii	(c)
141							
	A. SMTP	for attachments					
	B. POP3	ii. Retrieval, keeps mail on server					Answer
	C. IMAP	iii. iii. Sim deletes	_	etrieval, downloa	ds &		
	D. MIME			il protocol			

	a) A-iv, B-iii, C-ii, D-i	b) A-ii, B-i C-iv, D-i	ii,	c) A-i, B-ii, C- iii, D-iv	d) A-iv, B-	ii, C-i, D-iii	(a)
142	Match the following p	rotocols wit	h the	ir corresponding p	ort no.		
	A. HTTP			i. Port 25]	
	B. HTTPS			ii. Port 80			
	C. FTP			iii. Port 21		-	Answer
	D. SMTP			iv. Port 443			
	a) A-ii, B-iv, C-iii, D-i	b) A-i, B-i C-iii, D-		c) A-ii, B-iii, C-iv, D-i	d) A-iv, B	-ii, C-iii, D-i	(a)
143	Match correctly the fo	llowing pair	s:				
	A. ARP			i. MAC → IP			
	B. RARP			ii. Dynamic IP as		Answer	
	C. DHCP	iii. IP → MAC resolution					7 ms wei
	D. ICMP			iv. Error & diagn messages			
	a) A-i, B-ii, C-iii, D-iv	b) A-iii, B- C-iv, D-i	ii,	c) A-iii, B-iv C-i, D-ii	d) A-iii B-i, C-ii, I	D- iv	(d)
144	Match correctly the fo	llowing pair	s:	<u> </u>			
	A. Flooding		i. Each node forwards to all neighbors				
	B. Shortest I	Path		ii. Reliable but o			Answer
	C. Distance	Vector		iii. Uses Bellman			
	D. Link State	е	iv. Uses Dijkstra's algorithm				
	a) A-iv, B-ii, C-iii, D-i	b) A-i, B-ii C-iv, D-		c) A-i, B-ii, C- iii, D-iv	d) A-ii, B-	iii, C-i, D-iv	(b)
145	Match the following p	airs correctl	y:		1		
	A. Bridge		i. Works at Layer 2, forward by MAC				Answer
	B. Switch		:	ii. Multiport brid hardware swit			

	C. Hub		iii. Broadcasts to Layer 1	all ports,			
	D. Router		iv. Works at Laye forward by IP				
	a) A-iii, B-iv, C-i, D- ii	b) A-iv, B-i C-ii, D-i		d) A-i, B-ii, C-iii, D-iv	(d)		
146	In the OSI model, whi message?	In the OSI model, which layer is responsible for end-to-end delivery of a message?					
	a) Data Link Layer	b) Network Layer	c) Transport Layer	d) Application Layer	(c)		
147	The main disadvantage of Distance Vector routing protocol is:						
	a) High convergence speed	b) Count-to infinity problem	c) Requires global knowledge of network	d) Works only in small networks	(b)		
148	A TCP connection has maximum possible thr		ize of 20 KB. If the R	TT is 100 ms, what is the	Answer		
	a) 160 Kbps	b) 200 Kbp	c) 2 Mbps	d) 1.6 Mbps	(d)		
149	A 1 Mbps link is used to transmit a 1 MB file. Propagation delay = 20 ms. What is the total transmission + propagation delay?						
	a) 8.02 sec	b) 8.20 sec	c) 8.40 sec	d) 10 sec	(a)		
150	For data bits 1101 and generator polynomial 1011, what is the remainder after division (CRC)?						
	a) 001	b) 010	c) 011	d) 100	(a)		