Test Booklet No	
This booklet consists of 150 questions and	pages

RGUPET/2025/1004/102

RGUPET 2025 Common Entrance Test, 2025 DOCTOR OF PHILOSOPHY IN CHEMISTRY

Full Marks	: 150							Tin	ie: 3 H	our
Roll No.										
Day and Da	te of E	xami	inati	on: _						_
Signature of	f Invigi	lator	c(s)_		 	 	 			
Signature of	f Candi	date			 	 	 			
General Ins	tructio	ns:								—

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	India, primarily	The "Mission Sudarshan Chakra", recently launched by the Prime Minister of India, primarily relates to a) a national b) a national digital c) development of d) a national								
	renewable energy mission	currency mission	a multilayered air and missile defence system	mission to modernise Indian Railways	(c)					
2		tional mission being i		dian Institute of	Drone technology					
	a) Helicopters	b) Dairy technology	c) Drone technology	d) Artificial intelligence	c)					
3	North East India proposed to con	a's first underwater tu nect	nnel project, announce	ed in 2024, is	Numaligarh and Gohpur					
	a) Dibrugarh and Dhemaji	b) Jorhat and Majuli	c) Numaligarh and Gohpur	d) Guwahati and North Guwahati	c)					
4	A. Canada l B. Four pla C. Sweden D. Operatio	llowing statements are hosted the 51 st G7 sur yers were honoured w was ranked first in Glo on Sindoor was Launch on 7 th May 2025.	mmit in 2025. vith the Khel Ratna Av obal Innovation Index	2024.	(a)					
_	a) A, B and D	b) A,B and C	c) Only A	d) All of the above	A, B and D					
5	A. Lip B 2025 B. Shri India C. India UND D. India	(d)								
	a) A and B only	b) A, B and C only	c) A, C and D only	d) A, B, D only	A, B, D only					
6	Which of the formal A. Palk Strait jo B. The Radcliffe C. The MacMoh	ins India and Sri Lanke Line is between Indian Line separates Indian Line is between Iran a	ka a and Bangladesh lia and China	d) B, D	(d)					
	u) 11, D	[0, D , C	υ, υ, υ	(a) D, D	(u)					

7	, ,	Assertion (A): Eclipses do not occur on all full moon and new moon days. Reason (R): The moon revolves round the earth in an elliptical orbit.					
	a) A and R are true and R correctly explains A.	b) A and R are true but R does no explain A.	c) A is true R is false	d) R is true but A is false	(b)		
8	Right to equality	y is a-			Fundament al right		
	a) fundamental right	b) social right	c) cultural right	d) legal right	(a)		
9		e book "Midnight'	s Children" is-	L	Salman Rushdie		
	a) Shakespeare	b) Leo Tolostoy	c) Salman Rushdie	d) R K Narayan	(c)		
$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	Match the organ	izations with their	headquarters:				
	A. UNESCO		1. New York				
	B. WHO		2. Paris				
	C. UNICEF		3. Geneva				
	D. IMF		4. Washington D.C.				
	a) A-3, B-2,	b) A-2, B-3, C-1	, c) A-2, B-4, C-3,	d) A-1, B-3, C-2,			
	C-4, D-1	D-4	D-1	D-4	(b)		
1	He said, "Happy				He wished		
1	The correct indi	rect speech of the	above is-		me a happy		
	a) He said the	b) He wished me	a c) He said to me	d) I was wished a	new year. (b)		
	new year was	happy new year.	that happy new	happy new year.			
	happy.	117	year.				
1	Identify the corr	rect sentence(s) fro	m the following				
2		iends is a doctor.	in the following.				
	B. I don't know	nothing about her.					
	C. It is a two-ho		. 1 .				
	D. We will be de		e yesterday's programme				
	a) A, B	b) B, C	c) A, C	d) C, D	(c)		
1			t was there in the flask."	The appropriate	little		
3	quantifier to fill in the blank is-						
	a) all	b) little	c) sour	d) few	(b)		
1		•	'in/there/ disparity/is"		There is a		
4			sentence with the above j	jumbled	great		
	words/phrases is P There is a great		reality in disparity.		disparity in their theory		
	_	•	r theory and reality.		and reality.		
	R. Their great di	isparity is in a theo	ory and reality there.				
	S. Their great th	eory is a reality an	d in disparity there.				

	a) P	b) Q		c) R	d) S	(b)
1	T		1			4 5
1 5	The correct mat	ch of synonyms a	ind a	ntonyms is:		A-ii, B-iii, C-i, D-iv
)	A. Futile		i. H	eln		C-1, D-1V
	B. Generic			Effective		
	C. Hinder		iii.	Individual		
	D. Inception		iv.	Termination		
	a) A-i, B-ii, C- iii, D-iv	b) A-iii, B-ii, C- D-iii	iv,	c) A-iv, B-iii, C-i, D-ii	d) A-ii, B-iii, C-i, D-iv	(d)
1	The total number	er of squares in the	e fol	lowing figure is:		22
6						
	a) 24	b) 20		c) 22	d) 18	(c)
1	Fill in the blank	in the following	notta	ara.		KLLV
1 7		in the following j GLHX ILJW				KLLV
	a) KLLV	b) KLMX		c) JLLV	d) JLMX	a)
1 8		ces Vineet as the conav and Vineet are		son of the only brothe ited?	er of his father's	cousin
	a) brother	b) cousin		c) uncle	d) son-in-law	(b)
1 9	Which two num mathematically	correct?		eanged to make the given $\div 8 - 24 = 12$	ven equation	6, 8
	a) 6, 8	b) 6, 24		c) 3, 8	d) None	(a)
2 0	If BANKER is	coded as CAOKF	R, th	nen how would LAWY	YER be coded?	MAXYFR
	a) LBWZES	b) LBWYFR		c) MAXYFR	d) MAXZES	c)
2	only be eliminate removing them.	•				
	a) Random errors	b) Systematic errors		c) Cascading errors	d) Perpetual errors	b
2 2	Hypothesis-driv statement about tested.	oothesis is a ose truth is being				

	a) A valid hypothesis is based on 'that exists'	b) A hypothesis a positive conclusion	is	c) A hypothesis can never be tested	d) A valid hypothesis must be falsifiable	d	
2 3	Which of the following statements that could be considered as valid scientific hypotheses? A. Eating two ounces of olive oil a day decreases the odds of contracting heart disease. B. What is the best fertilizer to use to get large and tasty tomatoes? C. Macs are better than PCs. D. Briar's Aspirin cures headaches faster than RCS Aspirin.						
	a) A, B	b) A, B, C		c) A, D	d) B, C	С	
2 4	Relate the 'function or relationship' (A) and 'comment' (B) and select the appropriate answer A: Find how the speed of sound in air at fixed pressure depends upon air temperature. B: The control variable is temperature, and the response variable is sound speed.						
	a) Functional relationship is correct and the comment is true for the relationship	b) Functional relationship is incorrect but the comment is true for the relationsh	nip	c) Functional relationship is correct but the comment is false for the relationship	d) Neither the functional relationship is correct nor the comment is true	a	
5	Relate 'sampling Sampling Desi A. Deliberate B. Simple rand C. Stratified D. Sequential		Me i. S ii. s iii. s h iii p iv. y	thod ample collected as aformation received as urvey progresses ample drawn from a acterogeneous group ourposive selection of articular units very item in the popul as an equal chance of actusion	ation	Answer	
	a) A-iii, B-iv, C-ii, D-i	b) A-ii, B-iv, C-i D-i	ii,	c) A-i, B-iii, C-ii, D-iv	d) A-iii, B-ii, C-iv, D-i	a	
2 6		rvations in a norn		listribution is 1000. Ho -1σ and μ-1σ	ow many	Answer	
	a) 500	b) 680		c) 720	d) 950	b	
2 7	a) 500 b) 680 c) 720 d) 950 Which of the following are reasons for citing a paper? A. use its ideas, definitions, terms in a Research B. provides upcoming facts regarding undergoing Research Question. C. to adopt part/full methodology it adopted for a certain task. D. to refer to data also used in Current Research.						
	a) A, B, C	b) B, C, D		c) A, C, D	d) A, B, D	c	

2 8	A. Gift aut B. Extensiv C. Salami	ve experiments	Answer
	a)A, B, C	b) A, B, D c) B, C, D d) A, C, D	d
2 9	A. Journal Article B. Authore d Book C. Webpag e	i. Edwards, A. A., Steacy, L. M., Siegelman, N., Rigobon, V. M., Kearns, D. M., Rueckl, J. G., & Compton, D. L. (2022). Unpacking the unique relationship between set for variability and word reading development: Examining word- and child-level predictors of performance. <i>Journal of Educational Psychology</i> , 114(6), 1242–1256. https://doi.org/10.1037/edu0000696 ii. Levenson, H., Jinich, S., Vaz, A., & Rousmaniere, T. (2025). Deliberate practice in emotionally focused couple therapy. American Psychological Association. https://doi.org/10.1037/0000436-000 iii. Zeleke, W. A., Hughes, T. L., & Drozda, N. (2020). Home—school collaboration to promote mind—body health. In C. Maykel & M. A. Bray (Eds.), Promoting mind—body health in schools: Interventions for mental health professionals (pp. 11–26). American Psychological Association. https://doi.org/10.1037/0000157-002 iv. Taras, Z. (2024, May 30). Situational irony can be funny, tragic or even terrifying. howstuffworks. https://entertainment.howstuffworks.com/arts/literature/situat	Answer
	Chapter a) A-i, B-ii	ional-irony.htm , C- b) A-ii, B-iii, C-iv, c) A-iii, B-ii, C-i, d) A-i, B-ii, C-iii,	
	iv, D-iii	D-i D-iv D-iv	a
3 0	Which one	of the following refers to positive skewness?	
	a)	b) c) d) Mean: Median-Mode Median Mean X Mean: Median-Mode Median Mean X	С
3	How much	is the degree of freedom for the following data table?	Answer

	S. No.	X_i Hype	othesised med	$D_i = \left(X_i - \mu_{H_0}\right)$	D_i^2	
		m	$H_0 = 578 \text{ kg}.$			
	5	572	578	-6	36	
	6 7	57 8 570	578 578	0 -8	0 64	
	8	572	578	-6	36	
	9	596	578	18	324	
	10	544	578	-34 	1156	
	n=10			$\sum D_i = -60 \qquad \qquad \sum D_i^2 =$	1816	
	a) 8	b) 9		c) 10	d) 18	
						b
3	Find out the Nul	l hypothesis fo	r the give	en table		
2	S. No.	1	thesised mean	$D_i = \left(X_i - \mu_{H_0}\right)$	D_i^2	
		m_{H_i}	= 578 kg.			
	5	572	578	− 6	36	
	6 7	57 8 570	578 578	0 -8	0 64	Answer
	8	572	578	-6	36	
	9 10	596 544	578 578		324 156	
	n=10		3/0	$\sum D_i = -60 \qquad \sum D_i^2 = 18$		
						
	a) $\mu H_0 = 578 \text{kg}$.	b) $\mu H_0 \neq 578$		c) $\mu H_0 = -578$ kg.	d) $\mu H_0 = \pm 578 \text{kg}$.	a
3	What will be sur	m of the devia	ations of	observations from the	he regression line?	Answer
	a) -∞	b) 0		c) +∞	d) undefined	b
4	Justification: It s confidence level a) Assertion is true and	shows a two tal b) Assertion false but	ailed hyp	5 percent of the sampothesis test model a c) Assertion is true and justification is	t 90 percent d) Assertion is true and justification	Answer
	justification explains the Assertion	justification explains the Assertion		true but does not explain the Assertion	for the Assertion is incorrect	d
3 5	Match into pairs Statistical meth		Details		e details mentioned:	
	A. Correlation	104		er 2, 3, 4,		
		regression			on on same	Answer
	B. Polynomial regression ii. More than two population on same					
, ,	characteristics					
	CANOVA					
	C. ANOVA D. Chi square		iii. Tes	teristics t of homogeneity uires only two varia	blas	

Ī	a) A-i, B-ii, C-	b) A-iv, B-i, C-ii,	c) A-iv, B-ii, C-i,	d) A-iii, B-i, C-ii,	h
	iii, D-iv	D-iii	D-iii	D-iv	D

36	Match the following and give the correct answer:								
	B. Rate of Che C. Increase the	B. Rate of Chemical Reaction ii Bond C. Increase the rate of reaction iii Lipid D. hydrocarbon chain insoluble in iv catalyst water							
	a) A(i), B(ii), C(iii), D(iv)	b) A(ii), B(i), C(iv), D(iii)	c) A(iii), B(ii), C(i), D(iv)	C(i), D(iv)	(b)				
37									
	a) Mean position	b) Extreme position	c) Halfway between mean and extreme	d) At all positions	(a)				
38	In a double-slit experiment, if the distance between slits is doubled, what happens to the fringe spacing on the screen?								
	a) Fringe spacing halves	a) Fringe spacing doubles	c)Fringe spacing remains the same	d)Fringe spacing quadruples	(a)				
39	A block slides down statements is true?	a frictionless incline	ed plane. Which	of the following	Answer				
	a) Mechanical energy is not conserved	b) Potential energy decreases, kinetic energy increases	c) Kinetic energy decreases	d)Acceleration is zero	(b)				
40	Which of the follow	ing is true for a phot	on in a vacuum?		Answer				
	a) It has mass but no energy	b) It has energy but no rest mass	c) It has rest mass and energy	d) It can be accelerated by a force	(b)				

41	If $f(x) = \begin{cases} \{ x-2 \}/(x-2)\}, & x \neq 0 \\ 0, & otherwise \end{cases}$								
	a) -1	(a) -1 $(b) 1$ $(c) 0$ $(d) does not exist$							
42	If $y = x^5 - 5x^4 + 5x^3 - 1$, then the value of $\frac{d^6y}{dx^6}$ is								
	a) 120 <i>x</i> – 120	b) 120	c) 0	d) cannot be evaluated.	c				

43	Which of the following is/are not true for a function f defined on closed interval $[a, b]$ to satisfy Rolle's theorem? A. f is continuous on closed interval $[a, b]$. B. f is differentiable on the open interval (a, b) . C. $f(a) = f(b)$ D. $f(k) = 0$ for at least one $k \in [a, b]$.							
	a) A and B	b) only D		c) B and C	d) O	nly C	b	
44	A group which satis	sfies commuta	tively	property is known a				
	a) Abelian group	b) Quotient g	group	c) Coset group	Coset group d) N		a	
45	Let M^T denotes transpose matrix of M and I is identity matrix. Match the following: A. M is idempotent B. M is symmetric i. $M = M^T$ C. M is skew-symmetric ii. $M = -M^T$ D. M is involution iv. $M^2 = M$							
	a) A-iv, B-i, C-iii, b) A-i, B-iv, C-ii, c) A-iv, B-i, C-ii, d) A-iv, B-ii, C-i, D-iii D-iii							

46	Relate the statements: A: Assertion–SSDs are faster than HDDs. B: Justification–Because SSDs use flash memory instead of spinning disks.					Answer	
	a) Both A and B are true, and B is the correct explanation of A	b) Both A a B are true, B is NOT t correct explanation A	but he	c) A is true, but B is false	d) A is fatrue	alse, but B is	(a)
47	Match the pairs:						
	A. Machine Learnin		unde	ables machines to erstand and proces uage	s human		
	B. Natural Languag Processing (NLP)	e	impı	ses data to learn ar rove predictions matically	nd		Answer
	C. Computer Vision			nalyzes and interp al data like images os			
	D. Expert Systems		mak	limics human deciing using rules and wledge base			
	a) A – iv, B – i, C – iii, D – ii.		3 –	c) A – ii, B – i, C – iii, D – iv.		i, B – i, C – iv,	(c)
48	Which programming	language is	widel	y used for AI and	ML deve	lopment?	Answer
	a) Python	b) JavaScri	pt	c) C#	d) HTM	L	(a)
49	Which of the following	ng statement	is tru	ie:			Answer

	a) A byte is made up of 16 bits.	b) ROM is volatile memory that loses data when power is switched off.	c) A compiler translates high- level code into machine code line by line.	d) A firewall is used to protect a computer network from unauthorized access.	(d)	
50	What is a network of networks called?					
	a) Intranet	b) Internet	c) WAN	d) LAN	(b)	

51	The function cos(a	(x) is an eigenfuncti	on of d^2/dx^2 with an	eigenvalue of-	$-a^2$		
	(a) -a	(b) $-a^2$	(c) a	(d) a^2	(b)		
52	The radial wave fu	inction, $R(\mathbf{r})$ of hydr	ogen atom depends	on the following	n and l		
	quantum numbers-	-					
	(a) n and l	(b) m and l	(c) l and s	(d) n only	(a)		
53	In the linear variat	ion method using tw	vo orthogonal basis	functions, the two roots	$\epsilon_0 \ge E_0$		
	obtained are ϵ_0 and	$d \epsilon_1 (\epsilon_0 < \epsilon_1)$. The co	rrect relation of the	se with exact ground	and $\epsilon_1 \geq$		
	and first excited state energies, E_0 and E_1 , respectively, is				E_1		
	(a) $\epsilon_0 \ge E_0$ and	(b) $\epsilon_0 \le E_1$ and ϵ_1	(c) $\epsilon_0 \leq E_0$ and	(d) $\epsilon_0 \ge E_0$ and $\epsilon_1 \ge E_1$	(d)		
	$\epsilon_1 \leq E_1$	$\geq E_1$	$\epsilon_1 \leq E_1$				
54	In a polar solvent,	In a polar solvent, the $\pi \to \pi^*$ transition shift to-					
					wavelen		
					gth		
	(a) shorter	(b) longer	(c) no shifting at	(d) unpredictable	(b)		
	wavelength	wavelength	all				
55	The vibrational de	gree of freedom of	a linear polyatomic	molecule containing n	3 <i>n</i> –5		
	atoms is-						
	(a) 3 <i>n</i> –5	(b) 3 <i>n</i> –6	(c) 3 <i>n</i> –4	(d) 3 <i>n</i>	(a)		
56	The energy in joul	e (J) corresponding	to light of waveleng	gth 30 nm is-	6.63 ×		
	(Given: Planck's c	constant, $h = 6.63 >$	$< 10^{-34} $ J s, speed o	f light, $c = 3 \times$	10^{-18}		
	10^8 m s^{-1}						
	(a) 6.63×10^{15}	(b) 6.63×10^{11}	(c) 6.63×10^{18}	(d) 6.63×10^{-18}	(d)		
57	The molecule, BF	belongs to the poir	nt group-		$D_{3\mathrm{h}}$		
	(a) D_{3h}	(b) D_{3k}	(c) C_{2v}	(d) C_{3v}	(a)		
58	Which molecule d	oes not have a cente	er of symmetry?		C ₆ H ₆		
	(a) C ₆ H ₆	(b) CH ₄	(c) H ₂ O ₂	(d) BF ₃	(a)		
59	The order and the	number of classes p	resent in a group wi	ith the irreducible	12 and		
	representations A1	, A2, B1, B2, E1, ar	nd E2, are, respectiv	vely-	6		

	(a) 6 and 6	(b) 12 and 6	(c) 6 and 3	(d) 12 and 3	(b)
60	Which of the follo	wing measures esca	aping tendency of a	component in the	chemica
	system -				1
					potentia
					1
	(a) kinetic	(b) free energy	(c) chemical	(d) entropy	(c)
	energy		potential		
61	The free energy ch	nanges due to mixin	g of ideal gases is g	iven by-	$\Delta G_{\rm m} =$
					$nRT \sum x_i$
	(a) $\Delta G_{\rm m} =$	(b) $\Delta G_{\rm m} =$	(c) $\Delta G_{\rm m} =$	(d) $\Delta G_{\rm m} =$	(a)
	$nRT \sum x_i \ln x_i$	$-nRT\sum x_{i}\ln x_{i}$	$nR \sum x_i \ln x_i$	$-nR\sum x_{i}\ln x_{i}$	
62	Which of the follo	wing is necessary for	or a process to be sp	ontaneous (ΔS=change	$\Delta S_{univers}$
	in entropy)?				e > 0
	(a) $\Delta S_{\text{system}} > 0$	(b) $\Delta S_{\text{system}} \leq 0$	(c) $\Delta S_{universe} > 0$	(d) $\Delta S_{\text{surroundings}} < 0$	(c)
63	Given below are to	wo statements. One	is labelled as Asser	tion A and the other is	Both A
	labelled as Reason	ıR.			and R
	Assertion A: If dQ and dW represent the heat supplied to the system and the				
	work done on the	system, respectively	7. Then, according to	the first law of	correct
	thermodynamics d	Q = dU - dW.			and R is
	Reason R: First la	w of thermodynamic	ics is based on the la	w of conservation of	the
	energy.				correct
		ve statements, choos	se the correct answe	r from the options	explana
	given below-				tion of
		T	1	T	A
	(a) A is correct,	(b) A is not	(c) Both A and R	(d) Both A and R are	(c)
	but R is not	correct, but R is	are correct, and	correct, and R is not	
	correct	correct	R is the correct	the correct	
<i>C</i> 1			explanation of A	explanation of A	
64		•	buted over 3 non-de		6ε
			le value for the total		(1-)
(5	a) 5ε	b) 68	c) 7ε	d) 8ε	(b)
65	If Q is the molar p	artition function, th	en the work function	1, A is given by	$\begin{vmatrix} A = \\ -KT \ln Q \end{vmatrix}$
	(a) $A = KT \ln Q$	(b) <i>A</i> =	(c) $A = QT$	(d) $A = \frac{KT}{\ln Q}$	(b)
		$-KT \ln Q$		In Q	

(activity coefficient (a) $a = 36\gamma_{\pm}^5 m^5$ In Daniell cell, elec		(c) $a = 36\gamma_{\pm}^4 m^4$	(d) $a = 108v^5m^5$	$108\gamma_{\pm}^5m^5$
			(c) $a = 36\gamma_{\pm}^4 m^4$	(d) $a = 108v^{5}m^{5}$	
67 I	n Daniell cell, elec	$108\gamma_{\pm}^4m^4$		$(a) a - 100 \gamma_{\pm} m$	(d)
67 I	n Daniell cell, elec				
		ctrons flow from-	L		anode
					to
					cathode
(a) cathode to	(b) anode to	(c) copper to	(d) SO_4^{2-} to Cu^{2+}	(b)
a	node	cathode	zinc		
68 I	f the concentration	n (c) is increased to	4 times its original	value (c), the change in	b√c
n	nolar conductivity	for strong electroly	tes is (where b is th	e Kohlrausch	
c	constant)-				
(a) 0	(b) <i>b</i> √c	(c) $2b\sqrt{c}$	(d) 4 <i>b</i> √c	(b)
69 I	f the solubility of	Al(OH) ₃ is S mol/L	, the solubility prod	uct is given by-	$K_{\rm sp} =$
					27S ⁴
((a) $K_{\rm sp} = 27S^2$	(b) $K_{\rm sp} = 27S^3$	(c) $K_{\rm sp} = 27S^4$	(d) $K_{\rm sp} = 3S^3$	(c)
70 F	For a certain reacti	on, $A \rightarrow P$, a plot of	f ln [A] versus time,	t, gives a straight line	1
v	with a slope of -1 .	46 s^{-1} . The order of	the reaction in A is-		
(a) 0	(b) 1	(c) 2	(d) 3	(b)
71 7	The plot of the rate	e constant $(\log k)$ vs	. ionic strength (\sqrt{I})	of the reaction	(IV)
[$[Co(NH_3)_5Br]^{2+}$ +	$+ OH^- \rightarrow [Co(NH_3)]$	$_{5}OH]^{2+} + Br^{-}$ follo	ows the line (refer to	
t t	he figure)-				
		(1)			
-	0 000	- (II) - (III)			
		· (IV)			
	\sqrt{I}	_``			
(a) (I)	(b) (II)	(c) (III)	(d) (IV)	(d)
72 1	The effective rate α	constants for the gas	seous unimolecular	reaction: $A \rightarrow P$	24.7
f	Collowing the Lind	emann-Hinshelwoo	d mechanism are 1.	$7 \times 10^{-3} \text{ s}^{-1}$ and $2.2 \times$	
1	$10^{-4} \mathrm{s}^{-1}$ at [A]=4.3	$7 \times 10^{-4} \text{ mol dm}^{-3} \text{ a}$	and 1.0×10^{-5} mol d	m ⁻³ , respectively. The	
r	ate constant for th	e activation step in	the mechanism is ap	proximately equal to	
(in $dm^3 mol^{-1} s^{-1}$)				
(a) 12.3	(b) 49.4	(c) 6.1	(d) 24.7	(d)

73	The correct form f	or a simple Langm	uir isotherm is-		θ =	
					$\frac{KP}{1+KP}$	
	(a) $\theta = KP$	(b) $\theta = (KP)^{\frac{1}{2}}$	(c) $\theta = \frac{KP}{1+KP}$	(d) $\theta = \frac{1+KP}{KP}$	(c)	
74	A monolayer of Na	1 2 molecules (effecti	ve area 0.165 nm ²) i	is formed on the surface	19	
	of 1.0 g of a solid	catalyst by adsorpti	on at 77 K. Upon w	arming, the desorbed		
	gas occupies 4.25 cm ³ at 273 K and 1.0 atm. The approximate surface area (m ²)					
	of the catalyst is-					
	(a) 15	(b) 19	(c) 25	(d) 30	(b)	
75	Which of the follo	wing is not an exar	nple of lyophobic co	olloids?	NaCl	
					solution	
	(a) NaCl solution	(b) gold sol	(c) As ₂ S ₃	(d) none of the above	(a)	
			solution			
76	The materials used	to construct the file	⊥ lter in an X-ray diffr	raction instrument is-	metal	
			·		with the	
					next	
					lower	
					atomic	
					number	
	(a) metal with	(b) metal with	(c) quartz	(d) beryllium	(b)	
	the next higher	the next lower				
	atomic number	atomic number				
77	Which method is t	l he most appropriate	e for determining we	eight weight-average	viscome	
	molecular weight?	,			try	
					method	
	(a) osmometry	(b) viscometry	(c) light	(d) sedimentation	(b)	
	method	method	scattering	method		
			method			
78	Which Miller inde	x plane is shown be	elow-	1	(0 1 2)	
	y ₂ y ₃ y			\(\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\		
	(a) (0 2 1)	(b) (0 4 1)	(c) (0 1 2)	(d) (0 0 0)	(c)	

79	During addition po	olymerisation, the re	eaction proceeds via	ļ-	free
					radical
					reaction
	(a) step-growth	(b free radical	(c) cascade	(d) elimination	(b)
	process	reaction	process	reaction	
80	In the osmometry	method for the dete	rmination of molect	lar weight of polymers,	10000
	a plot of π/C versu	ıs C is a straight line	e at 300 K with an i	ntercept of 0.249. The	
	molecular weight	of the polymer is ap	proximately -	_	
	(a) 20000	(b) 15000	(c) 10000	(d) 5000	(c)
81	In which of the fol	llowing numbers all	zeroes are significa	int-	0.0005
	(a) 0.0005	(b) 0.0500	(c) 50.000	(d) 0.0050	(a)
82	The major product	t formed in the follo	owing reaction is:		(a)
	Ph SiMe ₃				
	(a)	CM, 0 °C	(c)	(d)	
	Ph	Ph	Ph SiMe ₃	(u)	Ph
			' ''	Ph	
83		iguration for the two	o chiral centres in th	e following molecule	
	are:				
	H				(b)
	(a) 5R,6R	(b) 5R,6S	(c) 5 <i>S</i> ,6 <i>R</i>	(d) 5 <i>S</i> ,6 <i>S</i>	5R,6S
84	The correct relation	onship between the f	l following two comp	ounds is:	
	н, н		Cl		
			—• —•		(c)
	CI	Me Me—/	ÖH		
	(a) enantiomers	(b)	(c) homomers	(d) constitutional	homom
		diastereoisomers		isomers	ers
85	One of the coupling	g partners for Nege	eshi cross coupling i	eaction is:	(b)
	(a) Organo boron	(b) Organo zinc	(c) Organo tin	(d) Organosilicon	Organo zinc
86	In the following m	olecule, the asterisl	ked C is:		
	CI OH				(d)
	(a) chiral,	(b) achiral, non-	(c) achiral,	(d) achiral,	achiral,
	stereogenic and chirotopic	stereogenic and achirotopic	stereogenic and achirotopic	stereogenic and chirotopic	stereoge nic and
	cimotopic	acimotopic	acimotopic	Limotopic	inc and

					chirotop
					ic
87	Among the carboc	ations given below			
	⊕ (⊕			(a)
	(a) A is homoaromatic, B is antiaromatic and C is aromatic	(b) A is aromatic, B is antiaromatic and C is homoaromatic	(c) A is antiaromatic, B is aromatic and C is harmoaromatic	(d) A is homoaromatic, B is aromatic and C is antiaromatic	A is homoar omatic, B is antiaro matic and C is aromati
88	The major product	formed in the follo Pd(OAc) Ag ₂ CO ₃ , 6		n is:	(a)
	(a)	(b)	(c)	(d)	Phi
89	Correct statement	for the compounds	I & II is:		(b)
				L (1) T !	T
	(a) I is aromatic; II is non- aromatic	(b) I is antiaromatic; II is nonaromatic	(c) I is antiaromatic; II is antiaromatic	(d) I is aromatic; II is aromatic	I is antiaromatic; II is non-aromatic
90	Number of isoprer	ne units present in th	ne following molecu	le is:	
					(b)
	(a) 3	(b) 4	(c) 2	(d) 5	4
91	Curtius rearrangen				(d)
	(a) carbocation	(b) carbanion	(c) carbene	(d) nitrene	nitrene

92			tion given below is:		
	N_2	hv	le Me		
	-	~			(a)
		Me Me			
		н н		T	_
	(a) free radical	(b) carbocation	(c) carbanion	(d) carbene	free radical
93		ction is the fastest v			
	O CN	N	OH		(b)
	<u> </u>	NaH ►	X		(6)
		DMSO		Lastra	
	(a) X is <i>m</i> -NO ₂	(b) X is p -NO ₂	(c) X is <i>m</i> -OMe	(d) X is <i>p</i> -OMe	X is p- NO ₂
94	The λ_{max} value of	the following comp	ound is:		1102
					(b)
					(0)
	(a) 230 nm	(b) 225 nm	(c) 254 nm	(d) 215 nm	
	(a) 230 IIII	(b) 223 mm	(C) 234 IIII	(d) 213 mm	225 nm
95	Major product of	the following reaction	on is:		
	OH .	Conc. H ₂ SO ₄	_		(d)
		heat	?		
	(a)	(b)		(d)	
			(c) \\	0	O
96	The correct order	of reactivity for the Bu ^t	following dienes wi	th maleic anhydride is:	
					4.)
		Bu ^t Bu ^t			(b)
	М	N O			
	(a) M > N > O	(b) N > M > O	(c) N > O > M	(d) O > N > M	N > M > O
97	The correct statem	nent for the reaction	s P and Q is:	<u> </u>	
	Ph Br —	OH-	Ph ─ ─H		
	Р. Н Н	i-PrOH, 43 °C	Ph— — H		
		k _P			(a)
	Ph Br				. ,
	Q.	OH⁻ ►	Ph-==-H		
	H Br	i-PrOH, 43 °C k _Q			
L	<u> </u>				1

	(a) k _P > k _Q , P goes via an E2 and Q goes via an E1cB pathway	(b) k _P > k _Q ; both P and Q go via E2 pathway	(c) k _Q > k _P , P goes via an E1cB and Q goes via an E2 pathway	(d) k _Q > k _P ; both P and Q go via E1cB pathway	k _P > k _Q ; P goes via an E2 and Q goes via an E1cB pathwa
98	Substrates for Pete	rson olefination rea	ctions are:		(b)
	(a) carbonyl compounds and β-silyl carbanion	(b) carbonyl compounds and α-silyl carbanion	(c) aromatic acids and α-silyl carbanion	(d) none of the above	carbony 1 compou nds and \alpha-silyl carbani on
99	Which of the follo serve in Wittig rea	wing reagent serves ction?	similar purpose as	phosphorous ylides	(c)
	(a) Gilman's reagent	(b) Fetizon's reagent	(c) Tebbe reagent	(d) Baker's yeast	Tebbe reagent
100	The following two Me H H Me H Me H Me H				(c)
	(a) Enantiomers	(b) Diastereomer	(c) Homomers	(d) Constitutional isomers	Homom ers
101	Write down the ma	i, LDA i. LDA ii. CH ₃ CH ₂ CH	-	,	(c)
	(a) Ph	(b)	(c) OH	(d) Tos HN, N OH Ph	Ph
102		e makes possible to presence of more rea		unctional group	(b)
	(a) umpolung	(b) protecting group	(c) sython	(d) synthetic equivalent	protecti ng group
103	Among the follow	ing, the examples of	f chemoselective rea	actions are:	(a)

	A) MeOOC	COOH LiBH ₄	→ ?		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	EtOH			
	HO	Ag ₂ CO ₃ /Ce	lite		
	B)	-	-> ?		
		Benzene, re	iiux		
	OH				
	(C)	$ H_2$	→ 2		
		PtO ₂	•		
	D)	\sim 2004	→ ?		
		COOH NaHCO ₃			
	(a) A and B	(b) B and C	(c) A and D	(d) C and D	A and B
104	Which of the follo	wing compounds ac	ct as protecting grou	p for alcohols?	(d)
	(a) Ethers	(b) Acetals	(c) Ketals	(d) All of those	All of
					those
105	The major product	formed in the follo	wing reaction is:	•	
	l v	1:4111			
	Ph —	LiAlH₄ - 70 °C			(a)
	'	- 70 °C			
		T		1	
		(b)	(c)	(d)	ı
	Ph :				Ph /
	(a) ŌH	Ph /	Ph \	Ph Y	' ''
	, ,	ŌН	0	ŌН	OH
106	The following mo	lecular orbital corre	sponds to		
	0 0 .				(a)
		<u> </u>			
	(a) HOMO of	(b) HOMO of	(c) LUMO of	(d) LUMO of	НОМО
	pentadienyl	pentadienyl	pentadienyl	pentadienyl anion	of
	cation	anion	cation	penwaren ji amen	pentadi
					enyl
					cation
107	Cram's model can	predict major prod			(b)
	(a) some	(b) some	(c) any chiral	(d) none of the above	some
	enantioselective	diastereoselectiv	synthesis		diastere
	syntheses	e syntheses			oselecti
					ve
					synthes
108	The major product	formed in the follo	wing reactions sequ	lence is:	es
100			wing reactions sequ	ichico is.	
		DA, -78 °C PhNTf ₂			(d)
		$\frac{11N11_2}{PPh_3)_4$, LiCl ?			
	Me ₃ Si				
		SnBu ₃		1	
	(a)	(b)	(c)	(d)	Mo
	Me 	Me	Me SiMe ₃	Me SiMe ₃	Me
			Silvie ₃		
	SiMe ₃	SiMe ₃			
		1	1	1	

109	The following read	ction will result:			
	- Cl	EtONa → ?			(a)
	(a) a trans- cyclohexene as an exclusive product	(b) a cis- cyclohexene as an exclusive product	(c) a mixture of cis- and trans- cyclohexenes as product	(d) a substitution product	a trans- cyclohe xene as an exclusiv e product
110	For the following	reactions, which one	e of the statements i	s correct?	
	Reaction 1:	Ph heat heat	Ph Ph		(b)
	(a) Reaction 1 is faster than Reaction 2	(b) Reaction 1 is slower than Reaction 2	(c) Both the reactions will have same reaction rate	(d) Can't be predicted for the given reactions	Reactio n 1 is slower than Reactio n 2
111	The best spectrosc in an organic subst		etermine the present	ce of -CN functionality	(c)
	(a) ¹³ C NMR	(b) UV-Vis	(c) IR	(d) Mass spectrometry	IR
112	Thiophene reacts v	with HCHO in prese	ence of aq. HCl to g	•	(b)
	(a) CHO	(b) S CH ₂ CI	(c) S CH ₃	(d)	SCI
113		is used to synthesize		T	(a)
	(a) pyrimidine derivatives	(b) pyridine derivatives	(c) pyrrole derivatives	(d) pyran derivatives	pyrimid ine derivati ves
114	The heterocyclic	ring present in the a	mino acid histidine	is?	(d)
	(a) pyridine	(b) purine	(c) indole	(d) imidazole	imidazo le
115	In the following ed	quilibrium, conform	er B is more stable	that a when R is	
	R ✓ R ←	$\stackrel{R}{\longrightarrow}$ $\stackrel{R}{\longleftarrow}$ $\stackrel{R}{\longrightarrow}$ $\stackrel{R}{\longrightarrow}$			(b)
	(a) Me	(b) F	(c) Cl	(d) OMe	F
116	In the mass spectra and 150 is:	um of dichlorobenze	ene the ratio of the p	beaks at m/z 146, 148	(d)

	(a) 1:1:1	(b) 3:3:1	(c) 1:2:1	(d) 9:6:1	9:6:1		
117	Among the follow	ring, the optically ac	tive compound is:		(d)		
110	The demonstrated	SD wint annual					
118	D_3 E 20	e of D ₃ point group	is given below				
	A ₁ 1 1	1	x ² +y ² , z ²				
	A_2 1 1	$ \begin{array}{c c} -1 & z, R_z \\ 0 & (x,y) \end{array} $			c		
	E 2 _1		(x^2-y^2, xy)				
	The correct statem	nent for this point gr	(x_z, y_z) roup is.				
	a) All IR-active normal modes	b) All IR-active normal modes	c) It is possible to have a pair of	d) It is possible to have a totally	It is possible		
	are Raman	are Raman	degenerate IR-	symmetric normal	to have		
	inactive	active	active normal modes.	mode of vibration which is IR active.	a pair of degener		
			modes.	which is in active.	ate IR-		
					active		
					normal modes.		
					modes.		
119	The character table of C_{2v} point group along with an additional reducible						
	representation is given below						
	C _{2v} E	C_2 σ_v σ_v'					
	A ₁ 1	1 1 1					
	-	1 -1 -1			c		
	·	-1 1 -1 -1 -1 1					
		-2 -6 4					
	Γ is given by						
	a) A ₁ +5A ₂ +	b) A ₁ +2A ₂ +	c) $A_1 + 2A_2 + 5B_2$	d) $2A_1 + A_2 + B_2$	A_1		
	$2B_1$	5B ₁	0)111 12112 1322	a) 2111 + 112 + 132	$+2A_2 +$		
					5B ₂		
120	According to Wade's theory, the structure of the carborane [B ₉ C ₂ H ₁₂] ⁻ is				c		
	a) arachno	b) closo	c) nido	d) hypo	nido		
121	-			an interstitial carbide?	b		
122	a) Al ₄ C ₃	b) WC	c) SiC	tion of Fo ² + gives on	WC		
122		ocyanate (SCN) io. The reason for this		ution of Fe3+ gives an	A		
	a) Ligand to	b) Metal to	c) <i>d</i> – <i>d</i> transition	d) <i>f</i> – <i>f</i> transition	Ligand		
	metal charge	ligand charge			to metal		
	transfer (LMCT)	transfer (MLCT)			charge transfer		
					(LMCT		
)		

123	Consider the following reaction. $[Fe^{II}(CN)_6]^{4-} + [Ir^{IV}(Cl)_6]^{2-} \longrightarrow [Fe^{III}(CN)_6]^{3-} + [Ir^{III}(Cl)_6]^{3-}$					С
	The mechanism involved in this reaction is.					
	a) S _N 1 mechanism	b) S _N 1 mecha	(CB)	c) Outer sphere mechanism	d) Inner sphere mechanism	Outer sphere mechan ism
124	The softest acid ar	nong the	e following	is.		d
	a) Mg ²⁺	b) Al ³⁻	_	c) Ag ⁺	d)Li ⁺	Ag ⁺
125	When a hot concentrated solution of borax is treated with concentrated sulphuric acid, it is converted to					С
p	a) Diborane	b) Tetracid		c) Boric acid	d) Borazine	
126	The reagents required for the synthesis of borazine in chlorobenzene at 140 °C are.					b
	a) NH ₄ OH and BCl ₃	b) NH BCl ₃	₄ Cl and	c) NH ₄ OH and B ₂ H ₆	d) NH ₄ Cl and B ₂ H ₆	NH ₄ Cl and BCl ₃
127	Consider the following metalloenzyme and heme proteins in column I and match with column II.					
	Column I		Column I			
	i. Carboxypeption	a. Fe and d	lecomposition of H ₂	O_2		
	ii. Hemerythrin b. Zn and hydrolyses peptide bonds iii. Carbonic anhydrase c. Cu and O ₂ transport					
						d
	iv. Hemocyanin d. Zn and dehydration of bicarbonate ion e. Mg and hydrolyses peptide bonds f. Fe and transport of oxygen					
					bonds	
	a) ie.; iid.; iii f.; iva.	b) id. iiif.;	; iib.; iva.	c) ib.; iid.; iii f.; ivc.	d) ib.; iif.; iiid.; ivc.	ib.; ii f.; iii d.; ivc.
128	The extent of binding of O ₂ , at pH 7.2 and low oxygen partial pressure, is.				d	
	a) low for both		n for both	c) high for	d) low for	low for
	myoglobin and haemoglobin		obin and globin	haemoglobin and low for	haemoglobin and high for myoglobin	haemog lobin
	nacmogroom	nacino	giodiii	myoglobin	lingii for myogioom	and
						high for
						myoglo bin
129	The correct order of stability for the following pairs is.				d	
	a) Ga ⁺ > Ga ³⁺ ; In ⁺ > In ³⁺ ; Tl ⁺ > Tl ³⁺		< Ga ³⁺ ; n ³⁺ ; Tl ⁺ <	c) Ga ⁺ > Ga ³⁺ ; In ⁺ > In ³⁺ ; Tl ⁺ < Tl ³⁺	d) Ga ⁺ < Ga ³⁺ ; In ⁺ < In ³⁺ ; Tl ⁺ > Tl ³⁺	Ga ⁺ < Ga ³⁺ ; In ⁺ < In ³⁺ ; Tl ⁺ > Tl ³⁺
130	Among the following statements about halogens and their compounds. Identify the true and false statements. I. Interhalogen compounds are generally more reactive than pure halogens because the X–X′ bond is weaker than the X–X bond.					a

 II. The maximum oxidation state exhibited by iodine is +7 due to the availability of d-orbitals. III. The boiling point of hydrogen halides increases uniformly from HF to HI due to increasing molecular mass. 						
a) I. – True; II. – True; III. – False	b) I. – True; II. – False; III. – False	c) I. – False; II. – True; III. – False	d) I. – True; II. – False; III. – True	I. – True; II. – True; III. – False		
The correct order of reactivity of the interhalogens is.						
a) BrF ₅ > BrF ₃ > BrF	b) BrF > BrF ₃ > BrF ₅	c) BrF ₃ > BrF ₅ > BrF	d) BrF > BrF ₅ > BrF ₃	BrF ₅ > BrF ₃ > BrF		
The correct order	of first ionization en	ergy for alkali meta	ls is.	d		
a) Li > Na > K > Rb	b) Na > K > Rb > Li	c) K > Na > Li > Rb	d) Rb > K > Na > Li	Li > Na > K > Rb		
The statement which is/are correct about the above cyclophosphazene is/are. A. The oxidation state of P-atom is +V and N-atom is +III B. The oxidation state of P-atom is +III and N-atom is +III C. Synthesized by the reaction of PCl ₅ with NH ₄ Cl D. Synthesized by the reaction of an azide with PCl ₃						
a) A and C	b) B and D	c) C and D	d) A, B and C	A and C		
The structure of A	er ₂ and AeO ₂ r ₂ res	pectively are		b		
a) bent and tetrahedral	b) linear and see- saw	c) linear and tetrahedral	d) bent and see-saw	linear and see- saw		
The product and reaction of the following transformation reaction is. Cp C_{C}				d		
a) Cp C_{1} C_{2} C_{3} C_{4} C_{6} C_{6} C_{6} C_{6} C_{6} C_{6} C_{6} In the ESR spectry	b) C ₆ H ₅ , oxidative addition	c) OC OC , reductive elimination	Cp Cp A constant Cp	Cp 		
	availability III. The boiling due to incre a) I. – True; II. – True; III. – False The correct order of a) BrF ₅ > BrF ₃ > BrF The correct order of a) Li > Na > K > Rb Consider the followord of the considered of the co	availability of d-orbitals. III. The boiling point of hydrogen due to increasing molecular m. a) I. – True; II. – False True; III. – False The correct order of reactivity of the i a) BrF ₅ > BrF ₃ > BrF BrF The correct order of first ionization end a) Li > Na > K > b) Na > K > Rb Consider the following cyclophosphaze Clare Cl	availability of d-orbitals. III. The boiling point of hydrogen halides increases ur due to increasing molecular mass. a) I. – True; II. – b) I. – True; II. – C) I. – False; II. – True; III. – False False; III. – False; III. – False False; III. – False; I	availability of d-orbitals. III. The boiling point of hydrogen halides increases uniformly from HF to HI due to increasing molecular mass. a) I. – True; II. – Blook of the interhalogen halides increases uniformly from HF to HI due to increasing molecular mass. a) I. – True; III. – False		

a) 11b) 8c) 5d) 3137Calculate the number of α and β particles emitted in the conversion of $^{23}_{9}$ $^{214}_{82}Pb$.a) 6α and 4β particlesb) 6α and 2β particlesc) 3α and 4β particlesd) 3α and 2β particles138Amongst the following complexes, the complex(s) that show square plant geometry is/are $[Ni(CN)_4]^{2-}$ $[Zn(NH_3)_4]^{2+}$ $[Pt(NH_3)_4]^{2+}$ $[Ni(Cl)_4]^{2-}$ a) $[Ni(CN)_4]^{2-}$ and $[Pt(NH_3)_4]^{2+}$ and $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ $[Ni(CN)_4]^{2-}$ $[Ni(CN)_4]^{2-}$ $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ $[Ni($	$\begin{array}{c c} & b \\ \hline \text{particles} & 6\alpha \text{ and} \\ 2\beta \\ \text{particle} \\ s \\ \hline \text{nar} \\ & a \\ \hline \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & b \\ \hline particles & 6\alpha \text{ and} \\ 2\beta \\ particle \\ s \\ \hline nar & a \\ \hline \end{bmatrix}^{2+}, & [Ni(CN \\ and &)_4]^{2-} \end{array}$
particles parti	$\begin{array}{c} 2\beta \\ \text{particle} \\ s \\ \\ \text{nar} \\ \\ a \\ \\ \end{array}$
138 Amongst the following complexes, the complex(s) that show square plant geometry is/are $[Ni(CN)_4]^{2-}$ $[Zn(NH_3)_4]^{2+}$ $[Pt(NH_3)_4]^{2+}$ $[Ni(Cl)_4]^{2-}$ a) $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ and $[Ni(Cl)_4]^{2-}$ $[Ni(Cl)_4]^{2-}$ $[Ni(Cl)_4]^{2-}$ $[Ni(Cl)_4]^{2-}$	particle s nar a $\begin{bmatrix} 1^{2+}, & [Ni(CN)_{4}]^{2-} \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nar $\begin{bmatrix} s \\ a \end{bmatrix}^{2+}, \begin{bmatrix} Ni(CN \\ 4 \end{bmatrix}^{2-} \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a [Ni(CN and) ₄] ²⁺
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a \\ \end{bmatrix}^{2+}, [Ni(CN \\ and)_{4}]^{2-}$
] ²⁺ , [Ni(CN and) ₄] ²⁻
and $[Pt(NH_3)_4]^{2+}$ and $[Zn(NH_3)_4]^{2+}$ and $[Ni(Cl)_4]^{2-}$ $Pt(NH_3)_4]^{2+}$ $[Ni(Cl)_4]^{2-}$	and $)_4]^{2-}$
and $[Pt(NH_3)_4]^{2+}$ and $[Zn(NH_3)_4]^{2+}$ and $[Ni(Cl)_4]^{2-}$ $Pt(NH_3)_4]^{2+}$ $[Ni(Cl)_4]^{2-}$	and $)_4]^{2-}$
[Ni(Cl) ₄] ²⁻	
	[Pt(NH ₃
)4]2+
139 Amongst the following octahedral complexes, the complex that show	
paramagnetic behaviour are	d
[Co(NH ₃) ₆]Cl ₃ Na ₃ [CoF ₆] K ₄ [Fe(CN) ₆] K ₃ [TiF ₆] K ₃ [Fe(CN) ₆]	d
a) $[Co(NH_3)_6]Cl_3$ b) $[Co(NH_3)_6]Cl_3$ c) $Na_3[CoF_6]$, d) $Na_3[CoF_6]$, Na ₃ [Co
and Na ₃ [CoF ₆] and K ₄ [Fe(CN) ₆] K_3 [TiF ₆] and K_3 [TiF ₆] and	F_6],
$ K_4[Fe(CN)_6] K_3[Fe(CN)_6] $	K ₃ [TiF ₆
] and
	K ₃ [Fe(
	CN) ₆]
In the base hydrolysis of [Co(NH ₃) ₅ Cl] ²⁺ via the S _N 1 (CB) mechanism, the intermediate involved is.	he b
a) b) c) d)	[Co(NH
$[Co(NH_3)_5Cl(O [Co(NH_3)_4NH_2]^2 [Co(NH_3)_4NH_2([Co(NH_3)_3(NH_2)]^2 [Co(NH_3)_4NH_2([Co(NH_3)_4NH_2]^2 [Co(NH_3)_4NH_2([Co(NH_3)_4NH_2]^2 [Co(NH_3)_4NH_2]^2]]$	
H) +	2+
141 Which of the following statements are true for Eu ³⁺ (At. No. 63).	
A. The 4 <i>f</i> orbital is more than half-filled.	
B. The ground state term symbol is ⁷ F ₀ .	
C. The observed magnetic moment is due to populated higher J leve	el b
D. The position of the sharp bands in UV-vis spectra of the complex	i
D. The position of the sharp bands in UV-vis spectra of the complex depends heavily on ligand environment.	
depends heavily on ligand environment.	B and C
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D	B and C
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are:	b
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D	b A _{2g} +
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are:	$b \\ A_{2g} + \\ T_{1g} +$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$	$\begin{array}{c} b \\ A_{2g} + \\ T_{1g} + \\ T_{2g} \end{array}$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in	$\begin{array}{c} b \\ A_{2g} + \\ T_{1g} + \\ T_{2g} \end{array}$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$	$\begin{array}{c} b \\ A_{2g} + \\ T_{1g} + \\ T_{2g} \end{array}$ In their
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in electronic spectra. The reason for this is	$\begin{array}{c c} & & b \\ & A_{2g} + \\ & T_{1g} + \\ & T_{2g} \end{array}$ In their $\begin{array}{c c} b \\ & \\ & \end{array}$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in electronic spectra. The reason for this is	$\begin{array}{c c} & & b \\ & A_{2g} + \\ & T_{1g} + \\ & T_{2g} \end{array}$ In their $\begin{array}{c c} b \\ & b \end{array}$ ion is $\begin{array}{c c} f - f \end{array}$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in electronic spectra. The reason for this is a) $f - f$ transition is b) $f - f$ transition is c) $f - f$ transition is d) $f - f$ transition is	$\begin{array}{c c} & b \\ & A_{2g} + \\ & T_{1g} + \\ & T_{2g} \end{array}$ In their $\begin{array}{c c} b \\ & b \\ \hline \\ b \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in electronic spectra. The reason for this is a) $f - f$ transition is f transition i	$\begin{array}{c c} & b \\ & A_{2g} + \\ & T_{1g} + \\ & T_{2g} \\ \end{array}$ In their $\begin{array}{c c} b \\ \\ b \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
depends heavily on ligand environment. a) A and B b) B and C c) C and D d) B and D 142 In an octahedral field, the components arising from F term are: a) $E_g + T_{2g}$ b) $A_{2g} + T_{1g} + T_{2g}$ c) $A_{1g} + T_{1g}$ d) $E_g + T_{2g}$ 143 Lanthanide ions are pale-coloured and usually give rise to sharp bands in electronic spectra. The reason for this is a) f - f transition is Laporte allowed and the f -orbitals forbidden and the f -orbitals and the f -orbitals and the f -orbitals	$\begin{array}{c c} & b \\ & A_{2g} + \\ & T_{1g} + \\ & T_{2g} \\ \\ \text{n their} & b \\ \\ \text{ion is} & f\text{-}f \\ \text{dden} & \text{transitio} \\ \\ \text{itals are} & n \text{ is} \\ \end{array}$

144	In the abustons (Fo	(CO) Land IW/(x5	C. H.)(n. Cl)(CO) 1	the number of metal	the f- orbitals are located deep inside the atom
144	metal bond(s) resp	ectively, are.		2, the number of metal—	b
1.45	a) 3 and 2	b) 3 and 0	c) 0 and 2	d) 2 and 0	3 and 0
145	 Consider the following statements about Group 16 elements. A) Oxygen is predominantly found in the diatomic state (O₂), while sulfur, selenium, and tellurium commonly exist as polyatomic molecules. B) The metallic character increases down the group from oxygen to polonium. C) The stability of the -2 oxidation state increases from oxygen to polonium. D) The tendency to form multiple bonds (like double bonds) decreases as we move down the group. Which of the statements are true or false. 				
	a) A – True; B – False; C – True; D – True	b) A – True; B – True; C – False; D – False	c) A – True; B – True; C – False; D – True	d) A – False; B – True; C – False; D – True	A – True; B –True; C – False; D – True
146	_	ection is an example Ph_3 ₂ + HCl —	of: → IrHCl ₂ (CO)(PPh ₃) ₂	b
	a) Reductive elimination reaction	b) Oxidative addition reaction	c) Substitution reaction	d) Insertion reaction	Oxidati ve addition reaction
147	In the following reaction, the intermediate and product of the reaction is: [Fe(CN) ₅ NO] ² + OH				
	$\begin{bmatrix} a \\ Fe(CN)_5 N \\ OH \end{bmatrix}^{3-}$	$\begin{bmatrix} b \\ Fe(CN)_5 N \\ OH \end{bmatrix}^{3-}$	c) [HO-Fe(CN) ₅ NO] ³⁻ ,	d) $[(HO)_2-Fe(CN)_4NO]^{3-}$, $[Fe(OH)_2(CN)_3NO]^{2-}$	Fe(CN) ₅ N C
	[Fe(CN) ₅ NO ₂] ⁴⁻	[Fe(CN) ₅ NO(OH)] ⁴⁻	[Fe(OH)(CN) ₄ N O] ²⁻		Fe(CN)5NO ₂] ⁴⁻
148	The correct bond of	order of O ₂ -, O ₂ and	O_2^+ is.		b
			c) 2, 2.5, 1.5		1.5, 2, 2.5
149	"The ionization en	ergy of Be atom is g	greater than that of I	B atom". The reason is.	a
	a) Greater penetration	b) Greater penetration	c) Smaller size of B atom.	d) Larger size of Be atom.	Greater penetrat

	power of s-	power of p-			ion	
	orbitals	orbitals			power	
	compared to p-	compared to s-			of s-	
	orbitals.	orbitals.			orbitals	
					compar	
					ed to p-	
					orbitals.	
150	The correct order	of lability of the con	nplexes is		с	
	a) $SF_6 > [PF_6]^- >$	b) $SF_6 > [SiF_6]^{2-}$	c) $[AlF_6]^{3-}$	d) $[AlF_6]^{3-} > [PF_6]^{-} >$	[AlF6]3-	
	$[SiF_6]^{2-}>$	$> [PF_6]^- >$	$[SiF_6]^{2-} > [PF_6]^{-} >$	$[SiF_6]^{2-} > SF_6$	>	
	$[AlF_6]^{3-}$	$[AlF_6]^{3-}$	SF ₆		$[SiF_6]^{2-}$	
					> [PF ₆]-	
					> SF ₆	