Test Booklet No. _____ This booklet consists of 100 questions and __ printed pages.

RGUCET/2025/36

100

Series

RGUCET 2025 Common Entrance Test, 2025 MASTER OF SCIENCE IN STATISTICS

Full Marks: 100						Time: 2	Hours				
Roll No.]		
Day and Date	Day and Date of Examination:										
Signature of I	Signature of Invigilator(s)										
Signature of (Candi	idate									

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy

1	In the given sentence error. 'All the ladies of the Sunday evening.'	C	and prays together		
	a) on Sunday evenings	b) and prays together	c) assemble in temple	d) all the ladies of the colony	b)
2	Select the correct ind The gardener said to	The gardener requested the children not to pluck any flowers.			
	a) The gardener told to the children to kindly not pluck any flowers.	b) The gardener requested the children not to pluck any flowers.	c) The gardener ordered the children to not pluck any flowers.	d) The gardener requested to the children please do non pluck any flowers.	b)
3	 A. Sentences tha sentences. B. Transitive ver Based on the above s options given below: 	Statement B is true but not A			
	a) Statement A is true but not B	b) Statement B is true but not A	c) Both statements A and B are true	d) Both statements A and B are false	b)
	Match the following	pairs of synonyms.	I		
4	A. IrresoluteB. FrugalC. MotiveD. Pity	i. Miser ii. Under iii. Merc iv. Inten	cided y		A-ii, B-i, C-iv, D-iii
	a) A-i, B-ii, C-iii, D- iv	b) A-iv, B-iii, C-ii, D-i	c) A-ii, B-i, C-iv, D-iii	d)A-iii, B-ii, C-i, D-iv	c)
5	Select the most appro The <i>incidental</i> meet expend his business.	Planned			
	a) Fortunate	c)			
6	Which article of the pardoning?	Indian Constitution	gives the Preside	ent the power of	Article 72
	a) Article 73	b) Article 72	c) Article 75	d) Article 74	b)

7	Which of the statement(s) is					
	A. The human heart haB. The Statue of LibertC. Lightning never stripD. Venus is the closest	Only B is true				
	a) Only A is true	b) Only B is true	c) A and B are true	d) C and D are true	b)	
8	The Flamingo festival is cel				Andhra Pradesh	
	a) Rajasthan	b) Assam	c) Manipur	d) Andhra Pradesh	d)	
9	Match the capital cities with	n their country.				
	A. Berlini.CanadaB. Moscowii.GermanyC. Canberraiii.RussiaD. Ottawaiv.Australia					
	a) A-i, B-ii, C-iv, b) A-ii, B-iii, c) A-ii, B-iii, d) A-iii, B-ii, C-iv, D- D-iii C-iv, D-i C-i, D-iv i					
10	Which planet is known as the "Red Planet"?					
	a) Venus b) Earth c) Mars d) Jupiter					
11	Which organization has re Obscurant Chaff Rocket (M	•		ge-Microwave	DRDO	
	a) ISRO b)	DRDO c)	HAL d)	CSIR		
12	a) ISRO b) DRDO c) IIAL d) CSIR Which of these statements are correct? I. Lt. General KaiwalyaTrivikramParnaik, PVSM, UYSM, YSM (Retired) is the present governor of Arunachal Pradesh. II. Shri Lakshman Prasad Acharya is the present governor of Manipur. III. Shri La. Ganesan is the present governor Nagaland. IV. Shri C H Vijayashankar is the present governor of Meghalaya.					
	a) I, II, III and IV b)	I, II, and IV. c)	I, III and IV.	II,III and IV	c)	
13	Given below are two statements: choose the most appropriate answer from the options Assertion (A): COVID-19 is caused by a virus. Antibiotics do not work against viruses. Reason (R): The bacteria of COVID-19 is very infective.					
	a) Both the A and R b)	Both the A c)	A is true but d)	A is false but	c)	

	are true and R is the correct explanation of A.	NOT corre	out R is the oct anation	R is false.	R is true.	
14	Match List I with List	I:				
	List I A. India Men's Cricke B. Australia Women's Team C. Women's World C D. Durand Cup, recent in news, is associated which sports?	Cricket up 2027 tly seen	Champi III. Foo IV. Wor	the ICC Men's tons Trophy 2025	<u> </u>	A-II, B-IV, C- I, D-III
	a) A-IV, B-III, C-I, D-	b) A-II,		c) A-II, B-IV,	d) A-III, B-IV,	c)
15	II C-IV, D-I C-I, D-III C-I, D-II Which of the following institute recently launched the 'Electric Tiller'? Image: Comparison of the following institute recently launched the 'Electric Tiller'?					CSIR-Central Mechanical Engineering Research.
	a) CSIR-Central Leather Research Institute.		ral nanical neering	c) CSIR- Central Institute of Mining and Fuel Research.	d) CSIR- Advanced Materials and Processes Research	b)
16	Find the answer choice 1. J L N P R T ?	that can 1	eplace th	e question mark in	the letter series.	V
	a) S	b) U		c) V	d) W	c)
17	Which letter will come H J L	in the bla M N O	nk square			Ι
	a) D	h) C			T (L	4)
18	a) R Given below are two st the options Assertion (A): If a conclusion logic argument is conside Reason (R): An argument is vali	cally follo red valid.	ws from t	the given premises		d) A is true but R is false.

	a) Both the A and R are true and R is the correct explanation of A.	b) Both the A and R are true but R is NOT the correct explanation of A.	c) A is true but R is false.	d) A is false but R is true.	c)
19	How many triangles are	there in the given	figure?		19
	a) 15	b) 17	c) 18	d) 19	d)
20	Jone walks a certain dis Then he turns left and v meters. Then he turns l walks 18 meters to reac	18 meters			
	a) 20 meters	b) 18 meters	c) 22 meters	d) 41 meters	b)

21	Let Ax = b be a non augmented matrix	The system has no solution.				
	a) Rank of A is 3.	b) The system has no solution.	c) The system has a unique solution.	d) The syste has an infin number of solutions.		b
22	The eigen values of the matrix: $A = \begin{bmatrix} 2 & 1 & 0 \\ 9 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$					2, 5, -1
	a) -2, 5, -1	b) 2, 5, -1	c) 2, 2, 5	d) 1, 2, 5		b
23	Match List I with Li	ist II:				
	List I: Mat	trix L	ist II: Character	istics Root		
	A. Hermitian matrixi. Unit modulesB. Skew-Hermitian matrixii. Diagonal elements of matrix					
						A-III, B-IV, C-I, D-II
						C-1, D-11
	C. Unitary matrix iii. Real					
	D. Unitary matrix	. Unitary matrix iv. Either zero or pure imaginary				
	a) A-IV, B-III, C-I,	b) A-IV, B-III,	a) A-III, B-IV,	d) A-III, B-	IV,	d

	D-II	C-II, D-I	C-II, D-I	C-I, D-II	
24	D-II If $A = \begin{bmatrix} 4 & x \\ 2x - 3 & x \end{bmatrix}$ a) 2	$\left[\begin{array}{c} + 2 \\ + 1 \end{array}\right]$ is symmetri	c, then what is x	equal to?	5
	a) 2	b) 3	c) -1	d) 5	d
25	For an orthogonal n	$Q^T = Q^{-1}$			
	a) $Q^T = Q^{-1}$	b) $0 = 0^{-1}$	c) $Q^T = Q$	d) $det(Q) = 0$	а
26	a) $Q^T = Q^{-1}$ Which of the follow symmetric matrices 1. A+B is also a sym 2. AB is a symmetric	of order n then nmetric matrix.	/are correct if A a	and B are two	A. Only 1.
	a) Only 1	b) Only 2	c) Neither 1 nor 2	d) Both 1 and 2	a
27	Given below are two from the options Assertion (A): If A A = 0, since all el Reason (R): Laplace along any row and el	A is any matrix g ements in columr ce expansion perm	given by $A = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$ I II are zero.	$\begin{bmatrix} 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 \end{bmatrix}$. Then	Both the Assertion and Reason are correct, Reason is the correct explanation for Assertion.
	a) Both the Assertion and Reason are correct, Reason is the correct explanation for Assertion.	b) Both the Assertion and Reasons are correct, Reason is not correct explanation for Assertion.	c) Assertion is the correct but Reason is incorrect.	d) Both Assertion and reasons are correct.	a
28	What is the degree			I	1
	a) 0	b) 1	c) 2	d) 3	b
29	The function $f(x)$		/ -		x = -1 is a point of maxima and x = 7/9 is a point of minima.

	a) x = -1 is a point of maxima and x = 7/9 is a point of minima.	b) $x = 7/9$ is a point of maxima and $x = -1$ is a point of minima.	c) $x = -1$ and x = 3 are points of maxima and x = 7/9 is a point of minima.	d) Neither a point of maxima nor point of minima.		a
30	A function $f(x)$ def	ined on <i>R</i> by:				
	f	$f(x) = \begin{cases} x & if \\ -1 & if x \end{cases}$	x is rational t is irrational			Continuous at $x = 0$.
	Which of the follow	ving statements	is true?			
	a) Discontinuous at every real number.	b) Discontinuous at $x = 0$.	c) Continuous at $x = 0$.	d) Continuo at all non-ze real number	ero	c
31	number.at x = 0.real numbers.Given below are two statements: choose the most appropriate answer from the optionsfrom the optionsAssertion (A): The differential equation x^2=y^2+xy dx/dy is an ordinary differential equation.an ordinary differential equation involves derivatives of the dependent variable with respect to only one dependent variable.					Both the Assertion and Reason are correct, Reason is the correct explanation for Assertion.
	a) Both the Assertion and Reason are correct, Reason is the correct explanation for Assertion.	b) Both the Assertion and Reasons are correct, Reason is not correct explanatio n for Assertion.	c) Assertion is the correct but Reason is incorrect.		nd	a
32	Match the List-I wit List I A. Integrating factor $(y + 2x^2)dx = 0$ B. Integrating factor $(2x^2 - 3y)dx = x$ C. Integrating factor $(2y + 3x^2)dx + x$	$\frac{1}{2} \frac{1}{2} \frac{1}$				A-I, B-IV, C-III, D-II

	D Integrating fast	an of IN	7. x ³		
	D. Integrating factor $2udu + (2u^3 + 2u)$		x°		
	$2xdy + (3x^3 + 2y)$	ax = 0			
	a) A-I, B-III, C-IV, D-II	C-III. D-II	c) A-II, B-I, C-III, D-IV	C-II. D-I	V, b)
33	Find the general sol	ution of the diffe	erential equation	$\frac{ly}{ly} = \frac{x+2}{ly}$	y
	Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+2}{x}$				$= x + \ln x^2 + C$
	a) $y = x^2 + $	b)	c)	d)	
	$ln x^2 + C$	$y = x^2 + \ln x + C$	$\begin{vmatrix} c \\ y \\ = x + \ln x \\ + C \end{vmatrix}$	$\begin{vmatrix} y \\ = x + \ln x \\ + C \end{vmatrix}$	2 d)
34	What is the degree of	f the differentie	+ C	+0	
54	what is the degree ($y = x \left(\frac{dy}{dx}\right)$ b) 2	$\int_{1}^{2} + \frac{dy}{dx}?$		3
	a) 1	b) 2	c) 3	d) 4	c)
35	Arithmetic mean is	a measure of:	L		
				_	central value
	a) central value	b) dispersion	c) correlation	d) skewness	,
36	In how many ways so that no two boys		s can sit around a	circular table	7!8!
	a) $(7!)^2$	b) $(8!)^2$	c) 7!8!	d) 15!	c)
37	Given below are two	o statements: cho	bose the most app	propriate answ	er Both the
	from the options			1	Assertion
	Assertion (A): In or	rder to find the d	ispersion of value	es of x from	and Reason
	mean \bar{x} , we take	absolute measur	e of dispersion.		are correct;
	Reason (R): Sum of	f the deviations t	from mean \bar{x} is ze	ero.	Reason is the
					correct
					explanation
			1	1	for Assertion.
	a) Both the A and	b) Both the A	c) A is true	d) A is false	
	R are true and	and R are		but R is	
	R is the correct	truebutR is	false.	true.	
	explanation of	NOT the			a)
	A.	correct			
		explanation			
38	Match List I with Li	of A. st II:	<u> </u>	1	
	List	T	List II		
	A. Bayes' Theorem				
	A. Dayes Theorem	A-IV, B-III,			
	B. Conditional Pro	hability II P()	$\overline{E_1 \cup E_2} = P(\overline{E_1})$		C-I, D-II
	C. Theorem of		$E_2 E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$)	
	complementary eve	ents III. $P($	$E_2 E_1\rangle = \frac{1}{P(E_1)}$	-	

	D. Theorem of add	lition IV. P(I	$H_i E) = \frac{P(H_i \cap E)}{P(E)}$		
	a) A-I, B-IV, C-III, D-II	b) A-III, B- IV, C-II, D- I	c) A-III, B- IV, C-I, D- II	d) A-IV, B- III, C-I, D-II	d)
39	For a negatively ske mean, median and r		, the correct relat	ion between	Mean <median <mode< td=""></mode<></median
	a) Mean=median =mode	b) Median <mean <mode< td=""><td>c) Mean <median <mode< td=""><td>d) Mode < mean <median< td=""><td>c)</td></median<></td></mode<></median </td></mode<></mean 	c) Mean <median <mode< td=""><td>d) Mode < mean <median< td=""><td>c)</td></median<></td></mode<></median 	d) Mode < mean <median< td=""><td>c)</td></median<>	c)
40	Two events A & B y joint probability of				0.2
	a) 0.2	b) 0.4	c) 0.6	d) 0.8	a)
	from the options Assertion (A): Med Reason (R): Mode				Both the A and R are true but R is NOT the correct explanation of A.
	a) Both the A and R are true and R is the correct explanation of A.	b) Both the A and R are true but R is NOT the correct explanation of A.	c) A is true but R is false.	d) A is false but R is true.	b)
42	If a Bivariate Norm is such that $\sigma_X = \sigma_Y$ a)uniform normal	al distribution wi			circular normal d)
43	Let X and Y be the variables. A. Ratio variab B. Discrete var C. Quantitative D. Pseudo varia	heights of fathers les iables variables			A and C.
1				A 11	
	Choose the correct a	answer from the G	options given bei	ow.	

44	Given below are two from the options Assertion (A): The of -1 to +1. Reason (R): Correla predicting the value another variable.	Both the A and R are true but R is NOT the correct explanation of A.			
	a) Both the A and R are true and R is the correct explanation of A.	b) Both the A and R are true but R is NOT the correct explanation of A.	c) A is true but R is false.	d) A is false but R is true.	b)
45	Let $Y = \beta_o + X\beta_1 + M$ Match List I with Lie List I: A. Estimator of $\hat{\beta}_o$ B. Estimator of $\hat{\beta}_1$ C. ε follows D. Y follows Choose the correct a	ist II: Li is I. is II II IV	ist II: $\frac{N(\beta_{o} + X\beta_{1}, \sigma^{2})}{r \frac{s_{y}}{s_{x}}}$ I. $\bar{y} + \hat{\beta}_{1}\bar{x}$ V. $N(0, \sigma^{2}I_{n})$	<i>I_n</i>)	A-III, B-II, C-IV, D-I
	a) A-III, B-II, C- IV, D-I	b) A-IV, B-III, C-II, D-I	c) A-III, B-IV, C-II, D-I	d) A-III, B-IV, C-I, D-II	a)
46	For a bivariate data and correlation coef $\bar{x} = 1.0$ Then the regression	-1.4+2.4x			
	a) 2.4-1.4x	b) 1.4-2.4x	c) -1.4+2.4x	d) 2.4-1.4x	c)
47	Which of the follow generating functionA. $M_X(t) = E($ B. $M_{cX}(t) = M$ C. $M_{X_1+X_2+\dots+X}$ D. $\frac{d^n M_X(0)}{dt^n} = E$ Choose the correct a a) A, B, C and D	B, C and D			

48	Which theorem sta sample mean will b	Law of large number			
	a) Law of large number	b) Law of averages	c) Markov's theorem	d) Central limit theore	m a)
49	A fair coin is flippe heads?	ed 100 times. V	What is the expec	cted number of	50
	a) 10	b) 25	c) 50	d) 75	c)
50	Match List I with I				
	List I:		List II:		
	A. Law of Large (LLN)	Numbers	I. distribution of average becom approximately regardless of the distribution, as grows	es normal,	A-III, B-I, C-
	B. Central Limit (CLT)		normal distribu		IV, D-II
	C. Purpose of LL	N	III. sample aver closer to the tru large sample	0	
	D. Purpose of CL	Г	IV. to guarantee sample estimate		
	Choose the correct	answer from t	he options given	below:	
	a) A-III, B-I, C-II, D-IV	a) A-III, B-I C-IV, D-	, c) A-I, B-II	I, d) A-I, B-II	(n)
51	Given below are tw from the options Assertion (A): As the sample s probability to th Reason (R): The variance of the size.	Both the A and R are true and R is the correct explanation of A			
	a) Both the A and R are true and R is the correct explanation of A.	b) Both the and R are true but I is NOT th correct explanati of A.	e but R is R false. he	d) A is false but R is true.	a)

	Which of the follow the sample mean is	The standard deviation of the sampling distribution is σ .			
	a) The sampling distribution is generated by repeatedly taking samples of size n and computing the sample means.	b) The standard deviation of the sampling distribution is σ.	c) The sampling distribution is approximat ely normal whenever the sample size is sufficiently large ($n \ge 30$).	d) The mean of the sampling distribution is µ.	b)
53	In research project interest has an equ research involves:	probability sampling			
	a) quota sampling	b) judgement sampling	c) probability sampling	d) convenience sampling	c)
54	Survey of populatio	n is called:			Census
	a) Parametric	b) Sample	c) Statistic	d) Census	d)
55	Given below are tw and the other is labe Assertion (A): Sam	Both the A and R are			
	research studies. Reason (R): Sampl sufficiently accurate In light of the above from the options give	e results. e statements, choo		-	true and R is the correct explanation of A .
	Reason (R): Sampl sufficiently accurate In light of the above	e results. e statements, choo		-	true and R is the correct explanation

	a)(<i>r</i> – 1)	b)(<i>r</i> – 3)	c)4(<i>r</i> – 1)	d) 3(<i>r</i> − 1)	c)
57	What is the purpos	To compare the means of two or more independent groups.			
	a) To compare the means of two independent groups	b) To compare the means of two or more independen t groups.	c) To compare the means of two or more dependent groups.	d) To determine the correlation between two variables.	b)
58	 Some properties of 1 A. Randomizati effects of un B. A factorial of time. C. Replication error. D. Blocking is provided to the second secon	A, C and D.			
	a) A, B, C and D	b) A, C and D.	c) A, B and D.	d) C and D.	b)
59	Given below are two from the options Assertion (A): ANO statistically signi more groups. Reason (R): ANO variance between	Both the A and R are true and R is the correct explanation of A .			
	a) Both the A and R are true and R is the correct explanation of A.	b) Both the A and R are true but R is NOT the correct explanation of A.	c) A is true but R is false.	d) A is false but R is true.	a)

60	Match List I wi	th Li	st II:					
			cepts):	List II (Descriptions):				
	A. Randomiza		•	I. 1	Repetition of trial	ls to		
	D. Dealisetion	estimate experimental error.						
	B. Replication II. Dividing experimental units into homogeneous							
	groups.				A-III, B-I, C-			
	C. Blocking			<u> </u>	. Assigning treatr	nents to		II, D-IV
					perimental units	purely by		
	D. Easterial D	acia	-		ance.	Cast of two		
	D. Factorial D	esigi	1		Studying the eff more factors	ect of two		
					nultaneously.			
	Choose the cor	rect a	answer from t	he c	options given belo	ow:		
	a) A-I, B-III, C D-IV		b) A-IV, B-I, C-II, D-II	,	c) A-I, B-III, C-IV, D-II	d) A-III, B- C-II, D-		d)
61	The sum of the	first	15 natural nu	mb	ers is:			120
	a) 105	b)	110	c)	115	d) 120		d)
62	The sum of the first <i>n</i> terms of a geometric progression (G.P.) is 80. If $a = 5$ and $r = 2$, find <i>n</i> .							4
	a) 3	b) -	4	c)	5	d) 6		b)
63	Which of the fo	ollow	ing is NOT a	geo	ometric progressi	on (G.P.)?		5, 10, 15, 25
	a) 2, 4, 8, 16	b)	1, 3, 9, 27	c)	5, 10, 15, 25	d) 1/2, 1/4 1/8, 1/		c)
64	What is the sum $0.375 + \dots$?	n of 1	he infinite ge	om	etric series 3 + 1.	5 + 0.75 +		6
	a) 5		b) 6		c) 7	d)	8	b)
65		pe of	Ū.	th	e curve $y = x^2$ at			6
	a) 3		b) 4		c) 6	d)	9	c)
66		-	u(x)) is:	1.				$\frac{x^2 \cos(x) +}{2x \sin(x)}$
	a) $x^2 \cos(x) + 2x \sin(x)$		$\frac{x^2 \cos(x) + \sin(x)}{\sin(x)}$		$x^2 \sin(x) + 2x$ $\cos(x)$	d) 2x sin(x)	b)
67	If $f''(a) > 0$	If $f''(a) > 0$ at $f'(a) = 0$, then $x = a$ is:						Point of local minimum
	a) Point of inflection		Point of local nimum		Point of local aximum	d)Saddle point		b)
68		e nor	mal to the cur	rve	y = f(x) at $x =$	A		-1/f'(a)
60	a) $f'(a)$ Which of the fo		f'(a)		-1/f'(a)	d) $1/f'$	a)	c) $f'(x) > 0$
69	Which of the following is the necessary condition for increasing							f'(x) > 0

function?				
a) $f'(x) < 0$	b) $f'(x) > 0$	c) $f'(x) = 0$	d) $f''(x) < 0$	b)
	48π cm ³ /sec			
a) 16π cm ³ /sec	b) 24π cm ³ /sec	c) 48π cm ³ /sec	d) 32π cm ³ /sec	c)
Match the corre				
		I. Slope of tangent II. Concavity & points of inflection		A-i, B-ii, C- iii, D-iv
-		$\frac{\text{III.} -1 / f'(a)}{\text{IV.} f'(x) = 0}$		
iii, D-iv	C-iv, D-i	D-i	C-ii, D-i	a)
Which of the for parts?	llowing represents	the formula of integr	ration by	$\int_{0}^{1} u dv = uv - $ $\int_{0}^{1} v du$
–∫v du	∫ v du	$c) \int u dv = vu - \int u dv$	$d) \int u dv = uv - \int v du$	d) $dir^{-1}(x) + C$
		c)tan ⁻¹ (x) + C	d)cos ⁻¹ (x) +	$sin^{-1}(x) + C$ b)
	, ,,		C	2
				2 b)
,	/		,	Answer
	b)			b)
a) $\int r^2 d\theta$	$1/2 \int_{\theta_1}^{\theta_2} r^2 d\theta$	c)∫ <i>r dθ</i>	d) $2\pi \int r dr$	$1/2\int_{\theta_1}^{\theta_2} r^2 \mathrm{d}\theta$
Which of the fo	llowing statements	s is TRUE about rand	om variables?	
 A. A discrevalues. B. A contin C. Random D. A random real num 	A & D are true			
a) Only A is true	b) A& C are true	c) A & D are true	d) B & C are true	c)
Match th B	ne item of column	A with appropriate ite	ems of column	
	inomial istribution	A. Measure of value	<u> </u>	1-B, 2-D, 3- C, 4-A
	a) $f'(x) < 0$ If the radius of a the rate of chang a) 16π cm ³ /sec Match the correct A. First de B. Second C. Slope on D. Critical a) A-i, B-ii, C- iii, D-iv Which of the for parts? a) $\int u dv = uv$ $-\int v du$ $\int (1 / \sqrt{(1 - x^2)}) dx$ a) $\ln x + C$ The area under the a) 1 For finding the and a) $\int r^2 d\theta$ Which of the form C. Random D. A random	a) $f'(x) < 0$ b) $f'(x) > 0$ If the radius of a sphere is increasing the rate of change of its volume we a) 16π cm ³ /sec b) 24π cm ³ /sec Match the correct pairs from the formal at the correct pairs from the formal at the correct pairs form the formal at the correct pairs for the formal at the	a) $f'(x) < 0$ b) $f'(x) > 0$ c) $f'(x) = 0$ If the radius of a sphere is increasing at the rate of 3 cm the rate of change of its volume when $r = 2 \text{ cm}$? a) $16\pi \text{ cm}^3/\text{sec}$ b) $24\pi \text{ cm}^3/\text{sec}$ c) $48\pi \text{ cm}^3/\text{sec}$ Match the correct pairs from the following table. A. First derivative $(f'(x))$ I. Slope of t B. Second derivative $(f''(x))$ II. Concavity inflection C. Slope of normal at $x = a$ III. $-1/f'(a)$ D. Critical point IV. $f'(x) = 0$ a) A-i, B-ii, C- b) A-ii, B-iii, C- iv, D-i D-i Which of the following represents the formula of integr parts? a) $\int u dv = uv$ b) $\int u dv = vu + c$ c) $\int u dv = vu - \int u$ $\int v du$ $\int v du$ dv $\int (1/\sqrt{1-x^2}) dx \text{ equals:}$ a) $\ln x + C$ b) $\sin^{-1}(x) + C$ c) $\tan^{-1}(x) + C$ The area under the curve $y = x$ between $x = 0$ and $x = 2$ a) 1 b) 2 c) 3 For finding the area in polar coordinates, which formul b) $1/2 \int_{\theta_1}^{\theta_2} r^2 d\theta$ c) $\int r d\theta$ Which of the following statements is TRUE about rand A. A discrete random variable takes infinitely values. B. A continuous random variable can take only con C. Random variables cannot have probabilities. D. A random variable maps outcomes of a random real numbers. a) Only A is b) $A\& C$ are true true true true c) $A\& D$ are true Match the item of column A with appropriate it B 1. Binomial A. Measure	a) $f'(x) < 0$ b) $f'(x) > 0$ c) $f'(x) = 0$ d) $f''(x) < 0$ a) $f'(x) < 0$ b) $f'(x) > 0$ c) $f'(x) = 0$ d) $f''(x) < 0$ If the radius of a sphere is increasing at the rate of 3 cm/sec, what is the rate of change of its volume when $r = 2$ cm?a) 16π cm ³ /secb) 24π cm ³ /secc) 48π cm ³ /secd) 32π cm ³ /secMatch the correct pairs from the following table.I. Slope of tangentB. Second derivative $(f'(x))$ I. Slope of tangentB. Second derivative $(f'(x))$ II. Concavity & points of inflectionC. Slope of normal at $x = a$ III. $-1/f(a)$ D. Critical pointIV. $f'(x) = 0$ a) A-i, B-ii, C-b) A-ii, B-iii, C-i, D-iD. Critical pointIV. $f'(x) = 0$ a) $f u dv = uv$ b) $\int u dv = vu + c) \int u dv = vu - \int u dv = \sqrt{-1} v du$ $-\int v du$ $\int v du$ $y u v = \sqrt{-1} v du$ $\int v du$ $\sqrt{1}/\sqrt{1-x^2}$) dx equals:a) $1 \ln x + C$ $b) \sin^{-1}(x) + C$ a) $1 x + C$ $b) \sin^{-1}(x) + C$ b) 2 c) 3 c) 3 d) 4 For finding the area in polar coordinates, which formula is used?a) $\int r^2 d\theta$ $1/2 \int_{\theta_1}^{\theta_2} r^2 d\theta$ c) $\int r d\theta$ d) $2\pi \int r dr$ Which of the following statements is TRUE about random variables?A. A discrete random variable can take only countable values.D. A random variables cannot have probabilities.D. A random variable maps outcomes of a random experiment to real numbers.a) Only A isb) $A & C$ are trued) Dhy A isb) $A & C$

	3 N	ormal	C. Continu	0118	
	Distribution4. Variance		Random Variable		
			D. Average		
			possible	e values	
	a) 1-C, 2-B, 3- D, 4-A	b) 1-B, 2A, 3- D, 4-C	c) 1-B, 2-D, 3-C, 4-A	d) 1-A, 2-B, 3-C, 4-D	c)
78	If X is a discrete	$\frac{\mu + c}{d}$			
	$a) \mu + c$	b) μ – <i>c</i>	c) $\frac{\mu + c}{d}$	d) $\frac{\mu}{d}$	c)
79	The joint pmf of <i>x</i> , <i>y</i> =0, 1, 2, 3. T		ables, X and Y is $f(x, y)$	<i>y</i>)= <i>kxy</i> ;	1/36
	a) 1/9	b) 1/16	c) 1/12	d) 1/36	d)
80	If $X \sim N(\mu, \sigma^2)$,	the transformation	Y = aX + b is also:		Normal
	a) Normal	b) log- Normal	c) inverse Normal	d) Exponential	a)
81	The cumulative variable X is:	Non- decreasing and right continuous			
	a) Always increasing	b) Always decreasing	c) Non-decreasing and right continuous	d) Non- increasing and left continuous	c)
82		two independent libution of X give	Poisson variates. The n X+Y is		Binomial
	a) Binomial	b) Poisson	c) Negative binomial	d) Geometric	a)
83	For a standard n	ormal random var	iable Z, the probabili	ty $P(Z > 0)$ is:	0.5
	a) 0	b) 0.5	c) 1	d) 0.6826	b)
84			It exponential variates ibution of X_2 given X_2		Uniform on $(0, t)$
	a) Exponential with mean <i>t</i> /2	b) Exponential with mean $t \theta/2$	c) Uniform on (0, t)	d) Uniform on $(0, t \theta)$	c)
85	Let X be a rand 0, 1, 2 & 3. The	1/10			
	a) 10	b) 1/10	c) 1/6	d) ¼	b)
86	 Which of the sta A. If X and is not ne B. The varialways e C. For a cospecific D. The more 	only C and D are true			

	variable				
	a) only A is true	b) only B and D are true	c) only B, C and D are true	d) only C and D are true	d)
87	Arrange the fol the most evolve A. Ordinal B. Nomina C. Ratio D. Interval	d.	measurements from t	he simplest to	B, A, D, C
	a) B, A, D, C	b) C, D, B, A	c) B, C, A, D	d) A, B, C, D	a)
88	The production was, 3.03, 4.02, 3.5 expected that t Tones/yr. to test is:	26			
	a) 28	b) 26	c) 25	d) 27	b)
89		sportation problem	Distribution method h, the number of dum		n-1
	a) n-1	b) n	c) 2n-1	d) n-2	a)
90		er lower bound for ation when μ is kn	or an unbiased estimation own, is:	ator of σ^2 in a	$\frac{2\sigma^4}{n}$
	a) $\frac{\sigma^4}{n}$	b) $\frac{\sigma^4}{2n}$	c) $\frac{2\sigma^4}{n}$	d) $\frac{2\sigma^4}{n-1}$	b)
91		=	on, the asymptotic di	<i>n</i> 1	Chi-square
	a) Beta of 1 st kind	b) Normal	c) Beta of 2 nd kind	d) Chi- square	d)
92	If $E[X Y] = E$	X and Y are independent			
	a) X and Y are dependent	b) X and Y are independent	c) X and Y are jointly uniform	d) X and Y are dependent	b)
93	The Cramér-Ra	o Lower Bound pr	ovides:		The lower limit of variance of an unbiased estimator
	a) The upper limit of variance of an	b) The lower limit of variance of an	c) The exact variance of an estimator	d) The expected value of an	b)

	estimator	unbiased estimator		estimator	
94	If an estimator bound, it is said	is unbiased and	d achieves the Cran	nér-Rao lower	Efficient
	a) Consistent	b) Robust	c) sufficient	d) Efficient	d)
95	 Which of the sta A. For an a and asyr B. Sample populati C. If the sa remain c D. The Cra unbiased 	only A and C are true			
	a) only A and C are true	b) only B and D are true	c) only A, B and C are true	d) All the statements are true	a)
96	The power of a	test is defined as:			P(rejecting Ho when Ho is false)
	a) P(failing to reject H₀ when H₀ is false)	b) P(rejectingH₀ when H₀ isfalse)	c) P(rejecting H ₀ when H ₀ is true)	d) P(not rejecting Ho when Ho is true)	b)
97			tor and T_2 is any other elation between T_1 and		0
	a) 0	b) 1	c) efficiency of T_2	d) 0.5	a)
98	A p-value is bes	Probability of obtaining a result as extreme as the observed under H ₀			
	a) Probability of H₀ being true	b) Probability of H ₁ being true	c) Probability of obtaining a result as extreme as the observed under H ₀	· ·	c)
99	In hypothesis te A. Type I e B. Type I e C. Type I e level D. Type I e	only A is true			

	test				
	a) only A is true	b) only B is true	c) only A and C are true	d) only D is true	a)
100	A more robust r t test is the:	Wilcoxon rank-sum test.			
	a) Matched pairs t test.	b) Kruskal- Wallis test	c) Wilcoxon rank- sum test.	d) Welch's t test.	c)