Test Booklet No. _____ This booklet consists of 100 questions and __ printed pages.

RGUCET/2025/SL

RGUCET 2025 Common Entrance Test, 2025 MASTER OF SCIENCE IN PHYSICS

Full Marks: 1	Full Marks: 100								ours
Roll No.									
Day and Date	of Examin	nation: _							-
Signature of In	nvigilator((s)							_
Signature of C	Candidate _								

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy

1	Choose the correct ind He said, "I will come to		of the sentence:		He said he would come the next day		
	a) He said he would come the next day.	 b) He says he will come tomorrow. 	c) He said he comes tomorrow.	d) He said he will come the next day.	a		
2	Arrange the words to f 1. always 2. early 3. to		sentence:		<mark>She bought a</mark> few apples.		
	a) 5-1-2-4-3	b) 4-3-5-1-2	c) 4-1-2-3-5	d) 4-1-2-5-3	d		
3	Choose the sentence t	hat uses a quantifie	er correctly:				
	a) He has much friends.	b) She bought a few apples.	c) This is mine pen.	 d) We don't have any sugar lefts. 	<mark>b</mark>		
4	Change into passive voice: They completed the project on time.						
	a) The project was completed on time by them.	b) The project completed on time.	c) The project was on time completed.	d) The project has been completed on time.	a		
5	Choose the sentences A. The group of studen B. The bouquet of rose C. Each of the players h D. Neither of the boys	C & D					
6	a) A & B Which country is the la	b) C & D Irgest producer of c	c) A & D offee in the world	d) B & D ?	b Brazil		
	a) Colombia	b) Vietnam	c) Brazil	d) Ethiopia	<mark>c)</mark>		
7	Match the following sports with the countrieA. Judo1.USAB. Baseball2.IndiaC. Rugby3. JapanD. Chess4. England			hey originated:	<mark>A-3, B-1, C - 4</mark> D - 2		
	<mark>a) A-4, B-1, C - 3, D - 2</mark>	<mark>b) A-3, B-1, C -</mark> 4, D - 2	<mark>c) A-3, B-2, C -</mark> 1, D - 4	d) A-1, B-2, C - 3, D - 4	<mark>b)</mark>		
8	 Which of the following statements is true? A) Albert Einstein discovered the structure of DNA. B) Jonas Salk developed the polio vaccine. C) Rosalind Franklin contributed to the discovery of DNA's double helix structure. D) Galileo Galilei formulated the special theory of relativity. 						
	a) B & C	b) A & D	c) A & C	d) B & D	a)		
9	Evaluate the Assertion	(A) and Justificatio	n (J):		Both the assertion and		

	B: The band's experime	A: The Beatles revolutionized rock music in the 1960s B: The band's experimentation with studio techniques, incorporation of diverse musical genres, and social influence helped shape the modern rock landscape.								
	a) Both the assertion and reasoning are true, and the reasoning correctly explains the assertion.	b) Both the assertion and reasoning are true, but the reasoning does not explain the assertion.		d) The assertion is false, but the reasoning is true.	<mark>a)</mark>					
10	Which of the followin Academy Awards?	<mark>Oppenheimer</mark>								
	a) Oppenheimer	b) The Fablemans	c) The Whale	d) Killers of the Flower Moon	a)					
11	Which team won the FC 3-0?	<mark>FC Goa</mark>								
	a <mark>) Bengaluru FC</mark>	<mark>b) FC Goa</mark>	c) Kerala Blasters	d) Mohun Bagan	<mark>b)</mark>					
12	What is the primary Foundation's (ANRF)				Advancing electric vehicle technologies					
	a) Advancing electric vehicle technologies	b) Developing advanced nuclear reactors	c) Enhancing satellite communication systems	d) Promoting agricultural biotechnology	a)					
13	Which company pres study at Digestive Dis			EGENT-1 clinical	Endogenex					
	a) Medtronic	b) Pfizer	c) GE HealthCare	d) Endogenex	d)					
14	What is the goal of the Zero Framework set	Achieving net-zero greenhouse gas emissions in maritime shipping								
	a) Eliminating single-use plastics in oceans	b) Achieving net-zero greenhouse gas emissions in maritime shipping	c) Protecting endangered marine species	d) Establishing marine protected areas worldwide	b)					

15	Why did the Indian g Piprahwa gems in M	They are considered sacred relics associated with the Buddha			
	a)They are considered sacred relics associated with the Buddha	b)The gems were stolen from a national museum	c)The auction violated international trade laws	d)The gems were found to be counterfeit	a)
16	A shopkeeper sells 2 price of one pen if th	<mark>₹6</mark>			
	a) ₹6	b) ₹7	c) ₹5	d) ₹4	a)
17	If CAT = 3120, and D		A BAT is 2120		
	a) BAT is 2120	b) BAT is 2124	c) BAT is 2123	d) BAT is 2130	a)
18	Evaluate the Assertion A: Assertion If a pers turns right again to v point. B: Justification After km east from his star	Both Assertion and Justification are True, and Justification is the correct explanation for Assertion			
	a) Both Assertion and Justification are True, and Justification is the correct explanation for Assertion	b) Both Assertion and Justification are True, but Justification is not the correct explanation for Assertion.		d) Assertion is False, but Justification is True.	<mark>a)</mark>
19	Type Questions here	for matching pai	irs:		
	A. Simple Interest	i. The rate per unit o	e at which an obje If time.	ct moves	
	B. Speed	ii. πr², wh	ere r is the radius		<mark>A-iii, B-i, C-ii,</mark>
	C. Area of a Circle D. Probability of rol	is principa	rmula P·R·T/100, v al, R is rate, and T 2, since there are	is time.	<mark>D-iv</mark>
	an even number on sided die	a 6- numbers	on a 6-sided die.		
	a) A-i, B-iv, C-ii, D-iii	b) A-iii, B-i, C- ii, D-iv	c) A-iv, B-i, C- ii, D-iii	d) A-ii, B-i, C-iv, D-iii	<mark>b)</mark>

20	Which bone protect	Cranium					
	a) Femur	b) Cranium	c) Tibia	d) Clavicle	b)		
21	Which of the following statements is true regarding an inertial frame of reference?						
	a)It rotates with constant angular velocity	b)It accelerates uniformly	c)It obeys Newton's laws of motion	d)It has zero mass	<mark>c)</mark>		
22	The second postu	late of special th	neory relativity states t	<mark>hat:</mark>	The speed o		
					light is constant in all inertial frames		
	a) Time is absolute in all inertial frames	b) The speed of light is constant in all inertial frames	c) All forces act instantaneously	d) Mass is invariant	<mark>b)</mark>		
23	The photoelectric	The particle nature of light					
	a) The particle nature of light	b) The wave nature of electrons	c) Nuclear decay	d) Thermal equilibrium	a)		
24	The Pauli Exclusio	The Pauli Exclusion Principle states that:		No two identical fermions car occupy the same quantum state			
	a) Two fermions can occupy the same quantum state	b) Electrons have zero spin	c) No two identical fermions can occupy the same quantum state	d) Bosons repel each other	<mark>c)</mark>		
25	Type Questions h						
	A Photoelectric B Compton effect	ct ii	Energy quantization Mass-energy equivale i Particle nature of ligh	<mark>A-iii, B-iv, C-i</mark> D-ii			

	a)A-iii, B-iv, C-i, D-ii	b)A-ii, B-iii, (iv, D-i	C-	c)A-i, B-ii, C-iii, D-iv	d)A-iv, B-i, C-ii, D-iii	a)			
26	Match the physic	al quantities	with	their units:					
	A Energy			neter					
	B Time		-	joule .		<mark>A-ii, B-iii, C-i,</mark>			
	C Length			second		<mark>D-iv</mark>			
	D Frequency		iv	hertz					
	a) A-iii, B-iv, C-	b) A-i, B-ii, C	2-	c) A-ii, B-iii, C-i,	d) A-iv, B-i, C-iii,	c)			
	ii, D-i	·)							
27	Match the nuclea	ar process wit		application:					
	A Alpha decay		<mark>A-ii, B-iv, C-iii,</mark>						
	B Gamma rays			Fire alarms Archaeology		D-i			
	C Radioactive da								
	D Beta decay		iv	High-energy imagin					
	a) A-iii, B-i, C-ii,	b) A-ii, B-iv,		c) A-i, B-ii, C-iv,	d) A-iv, B-i, C-ii,	b)			
	D-iv	C-iii, D-i		D-iii	D-iii				
28		-		ments are True (T) o					
	A. Time dilat stationary obse		011	ng clocks run slower	r relative to a				
	•		ice	to Galilean transform	mations at low				
	velocities.	<mark>T, T, F, F</mark>							
	C.The speed of li	ght depends o	on th	ne motion of the ligh	nt source.				
	D. Length con								
	motion.	1		1					
	a) T, T, F, F	b) T, F, F, T		c) F, T, T, F	d) F, T, T, F	a)			
29	Which option co								
	statements?								
			of ii	ncident light increas	es the kinetic				
	energy of eject		av h	elow which photoer	mission door not				
	occur.	snoid frequenc	Sy U	elow which photoel		<mark>F, T, T, T</mark>			
		photoelectro	ıs e	mitted increases wit	h light intensity				
	(above thresho				6				
	D. Photoelec	tric emission	occi	urs without measura	ble time delay.				
	a) T, T, T, T	b) F, T, T, T		c) F, F, T, F	d) T, F, F, F	<mark>b)</mark>			
30	Choose the corre	ect sequence o	of Tr	ue (T) and False (F)	for the following				
	statements:								
		els of a partic	le i	n a 1D infinite poter	ntial well are				
	quantized.				1				
				rst-order differentia nction must be norm		<mark>T, F, T, T</mark>			
				tion modulus gives					
	density.			aon modulus gives	and probability				
	· · · · · · · · · · · · · · · · · · ·								

	a) T, F, T, T	b) T, T, F, F	c) F, F, T, T	d) T, F, F, T,	a)
31	statements: A. Binding end from nucleons. B.Alpha decay red nucleus. C.Radioactive dec	ergy is the energy duces both the ato cay follows a logar	oth values for the for released when a nuc mic number and mas rithmic law. the original sample r	leus is formed	<mark>T, T, F, T</mark>
	a) T, T, T, T	b) T, F, T, F	c) F, T, T, F	d) T, T, F, T	d)
32	A (Assertion): The accurately.	Bohr model expla	ains hydrogen specti r momentum and in	al lines	Both A and B are true, and B is the correct
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is true, B is false	d) A is false, B is true	a)
33	A: The Schrödinge	ere for assertion a er equation can be ts dominate at all	applied to macrosc	opic bodies.	<mark>A is false, B is</mark> false
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is false, B is false	d) A is false, B is true	<mark>c)</mark>
34	Type Questions he A (Assertion): Tim observers. B (Justification): N stationary clock	Both A and B are true, and B is the correct explanation of A			
	a) Both A and B are true, and B is the correct	b) Both A and B are true, but B is not the correct	c) A is true, B is false	d) A is false, B is true	a)

	explanation of	explana	tion			
	А	of A				
35	Which of the follo reference?	wing stateme	nts i	s true regarding an ir	nertial frame of	It obeys Newton's laws of motion
	a) It rotates with constant angular velocity	b) It accelerate uniformly	es	c) It obeys Newton's laws of motion	d) It has zero mass	<mark>c)</mark>
36	The Pauli Exclusion Principle sta			that:		No two identical fermions can occupy the same quantum state
	a) Two fermions	b) Electrons		c) No two identical	d) Bosons	
	can occupy	have zero		fermions can	repel each	
	the same	spin		occupy the	other	<mark>c)</mark>
	quantum			same quantum		
	state			state		
37	Type Questions he					
	A Photoelectric effect			ergy quantization		<mark>A-iii, B-iv, C-i,</mark>
	B Compton effec			lass-energy equivaler		<mark>D-ii</mark>
	C Blackbody radi			article nature of light		
	D Special Relativi	ity	iv P	hoton momentum		
	a)A-iii, B-iv, C-i,	b)A-ii, B-iii, C	2-	c)A-i, B-ii, C-iii, D-iv	d)A-iv, B-i, C-ii,	a)
	D-ii	iv, D-i			D-iii	<mark></mark>
38	Match the physica	al quantities w				
	A Energy			eter		
	B Time		ii jo			<mark>A-ii, B-iii, C-i,</mark>
	C Length			econd		<mark>D-iv</mark>
	D Frequency		iv h	ertz		
	a) A-iii, B-iv, C-ii,	b) A-i, B-ii, C	-	c) A-ii, B-iii, C-i, D-	d) A-iv, B-i, C-	
	D-i	iv, D-iii		iv	iii, D-ii	<mark>c)</mark>
39	Match the nuclear		its a			
	A Alpha decay			ncer treatment		
	B Gamma rays			re alarms		A-ii, B-iv, C-iii,
	C Radioactive dating		iii A	rchaeology	<mark>D-i</mark>	
	D Beta decay		iv H	ligh-energy imaging		

	a) A-iii, B-i, C-ii,		c) A-i, B-ii, C-iv, D-iii		<mark>b)</mark>
40	D-iv	iii, D-i	opto are True (T) and	D-iii	
40	 A. Time dilatistication stationary of B. Lorentz travelocities. 	on implies movin observer. nsformations redu	nents are True (T) or F g clocks run slower r nce to Galilean transf	elative to a ormations at low	<mark>Т, Т, F, F</mark>
	-		on the motion of the literpendicular to the difference of the diff	-	
	a) A-T, B-T, C-F, D-F	b)A-T, B-F, C-F, D-T	c) A-F, B-T, C-T, D-F	d) A-F, B-T, C-T, D-F	<mark>a)</mark>
41	Mark the correct statements:A. Binding energy nucleons.B. Alpha decay re nucleus.C. Radioactive de D. After two half-	<mark>T, T, F, T</mark>			
	a) A-T, B-T, C-T, D-T	b) A-T, B- F, C- T, D-F	c) A-F, B-T, C-T, D- F	d) A-T, B-T, C-F, D-T	d)
42	accurately.	Bohr model expl	ains hydrogen spectr ar momentum and in		Both A and B are true, and B is the correct
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is true, B is false	d) A is false, B is true	a)
43	Type Questions he A: The Schrödinge B: Quantum effec	<mark>A is false, B is</mark> false			
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is false, B is false	d) A is false, B is true	<mark>c)</mark>

44	Type Questions he	Both A and B								
	A (Assertion): Tim observers. B (Justification): N	 A (Assertion): Time dilation occurs due to the relative motion between observers. B (Justification): Moving clocks are observed to tick slower than stationary clocks. 								
	a) Both A and B are true, and B is the correct explanation of A	b) Both A and B are true, but B is not the correct explanation of A	c) A is true, B is false	d) A is false, B is true	<mark>a)</mark>					
45	its observed ler	ngth due to length			<mark>1.2 m</mark>					
	a) 2.0 m	b) 1.2 m	c) 1.6 m	d) 0.6 m	<mark>b)</mark>					
46	What is the de Bro	oglie wavelength o	of a 1 keV electron	2	<mark>0.388 Å</mark>					
	a) 0.038 Å	b) 1.23 nm	c) 12.3 Å	d) 0.388 Å	<mark>d)</mark>					
47	a 1D box is	nce between the	first and second le	vel of a particle in	$\frac{3h^2}{8ml^2}$					
	a) $\frac{3h^2}{8ml^2}$	b) $\frac{5h^2}{8ml^2}$	c) $\frac{4h^2}{8ml^2}$	d) $\frac{8h^2}{8ml^2}$	<mark>a)</mark>					
48	If the half-life of a after 30 hours?		pe is 10 hours, wha	t fraction remains	<mark>1/8</mark>					
	a) 1/2	b) 1/4	c) 1/8	d) 1/16	<mark>c)</mark>					
49	The coordination I lattice is:	number of an ato	m in a face-centere	d cubic (FCC)	<mark>12</mark>					
	a) 4	b) 6	c) 8	d) 12	<mark>d)</mark>					
50	Which of the follo A The conduction B There is a large of C The valence and D Electrons canno	The valence and conduction bands overlap								
	a) A	b) B	c) C	d) D	<mark>c)</mark>					
51	In an insulator, the	e energy band gap	o is typically:		<mark>Greater than</mark> 5 eV					
	a) Less than 1 eV	b) Between 1 and 3 eV	c) Greater than 5 eV	d) Zero	<mark>c)</mark>					

52	Match the terms w Diffraction (XRD) .									
	A Bragg's Law		i Th	e te	echnique used	d to				
				•	e the crystal s	tructu	re			
			-		erials.					
	B Diffraction Peak				condition that					
					ationship bety ength of X-rays				<mark>A-ii</mark> ,	B-iii, C-iv,
					spacing.	anu	liie		<mark>D-i</mark>	
	C Unit Cell				point at which	า				
					, uctive interfer					
			осс	urs,	, resulting in c	liffrac	tion			
			max		-					
	D X-ray Source			iv The periodic arrangement						
					ns in a crystal	1				
	a) A-ii, B-iii, C-iv,	b) A-i, B-ii, (2-	-	A-ii, B-i, C-	-	iii, B-i	i, C-i,	- 1	
	D-i	iv, D-iii		Ш,	D-iv	D-iv			<mark>a)</mark>	
53	The Brillouin zone is associated					<u> </u>			<mark>Rec</mark> latti	iprocal ce
	a) Reciprocal	b) Real space	ce	c)	Electron	d) M	agnet	ic	<mark>a)</mark>	
	lattice	lattice		sp	in	susc	eptibi	lity	aj	
54	In a perfectly elastic collision between two particles, which of the following is not conserved?								nternal nergy	
	a) Total energy	b) Total ki	kinetic c) Total linear		d) Internal		ernal	d)	
		energy			momentum		energ	y		
55	-	A uniform solid cylinder of mass 5 kg and radius 0.2 m rotates about its central axis. The moment of inertia of the cylinder about this axis is:							0	.1 kg·m²
	a) 0.05 kg⋅m²	b) 0.	.1		c) 0.2		d) 0.4		b)
	, , , , , , , , , , , , , , , , , , , ,		g∙m²		, kg∙m²	2	,	kg∙m²		,
56	The orbital radius of a	a satellite arou	nd Ea	rth	is doubled. Wr	nat hap	opens	to the	т	becomes
	orbital period TTT of	the satellite?							2	$2^{3/2}$ times
										he original
	/2	b) T becor	mes 2		c) T becomes	4	d) T be	ecomes	d)
	a) T becomes $\sqrt{2}$	times the		-	times the			mes the		,
	times the original	original			original		οrigina			
57	A particle is at a dista		.om +1	he n			-		F	0 m/s²
57	spinning at 10 rad/s.									0 111/5-

	a) 50 m/s²	b) 100 m/s²	c) 50 m/s²	d) 10 m/s²	a)
58	The orbital velocity v of a $v = \sqrt{\frac{GM}{r}}$. If t to the orbital velocity?	Doubles			
	a) Doubles	a)			

59	In the kine molecules	Molecules move with same speed.			
	a) Elastic molecula r collision s	b) Negligible volume of molecules compared to container.	c) Significant Intermolecula r forces during collisions.	d) Molecules move with same speed.	<mark>d)</mark>
60		the following conditio			No heat is exchanged between the system and surroundings.
	a) No work is done by or on the system.	b) No heat is exchanged between the system and surroundings.	c) A process that occurs at constant pressure.	d) A process in which temperature remains constant.	<mark>b)</mark>
61		to the zeroth law of the remain equilibrium with			they must have the same temperature.
	a) they must have the same volume.	b) they must have the same pressure.	c) they must have the same temperature.	d) no heat flows between them if placed in contact.	c)
62	The root-n by $v_{rms} =$ dependenc	v_{rms} increase s as the square root of the absolute temperature.			

	a) v_{rms} i s directly proportio nal to the gas density.	b) v_{rms} in s with the square of t absolute temperatu	the re.	c) v _{rms} is independent of the molecular mass.	d) <i>v_{rms}</i> increase s as the square root of the absolute temperature.	e d)
63	Type Ques	tions here for	matchi	ng pairs:		
	B.Thermal ii. I equilibrium is in are C.Thermal contact iii.		betw ii. If is in are ii iii. P	State in which no no een bodies in conta A is in equilibrium equilibrium with C n equilibrium with C hysical connection ange	A–ii B–i C–iii D–iv	
	D.Therma	al reservoir	iv. B rema exch			
	a) A–ii B–i C–iii D–iv	b) A-i B-ii C-iii D-iv		c) A–ii B–i C–iv D–iii	d) A-ii B-iii C-i D-iv	a)
64	Type Ques	tions here for	matchi	ng pairs:		
	 A. ΔU (change in internal energy) B. Q (heat added) C. W (work done) D. First law statement 			ali. Energy added to the system as heatii. Work done by the system (on surroundings)iii. $\Delta U = Q - W$ iv. Energy is conserved: change in internal energy equals heat added minus work done."		A-iii B-i C-ii D-iv
	a) A–i B–iii C–ii D–iv	b) A-iii B-ii C-i D-iv		c) A–iii B–i C–ii D–iv	d) A-ii B-iii C-i D-iv	<mark>c)</mark>
65	Which of t A. The C internal en B. It desc in a pressu C. It can D. It is in	1				
	a) A & B	b) B & C		c) Only B	d) Only D	c)

66	 Which of the fol A. In a microcator to fluctuate. B. In a canonicator remain constant. C. In a grand constant constant constant. D. A canonical 	<mark>Only C</mark>			
	a) A & B b)	Only C	c) Only B	d) C & D	<mark>b)</mark>
67	Select the right of A: Assertion The pressure exergas molecules were as molecules were as molecules were as molecules were as the set of the	<mark>A</mark> is true, but <mark>B</mark> is false			
	B are is true, and co	are true, but B not the prrect splanation of	c) A is true, but B is false	d) A is false, but B is true	<mark>c)</mark>
68	Select the right of A: Assertion According to Ma container move B: Justification The Maxwell-Bo most probable s	<mark>A is false, but</mark> <mark>B is true</mark>			
	B are is true, and co	are true, but B not the prrect splanation of	c) A is true, but B is false	d) A is false, but B is true	d)

69		What is the average kinetic energy per molecule of an ideal gas at a temperature of 300 K ? (Take $k_B=1.38 \times 10^{-23} \text{ J/K}$)						
	a) 6.21×10 ⁻ ²¹ J	b) 4.14×10 ⁻²¹ J	c) 3.12×10 ⁻²¹ J	d) 2.07×10 ⁻²¹ J	c)			
70		The root-mean-square (r.m.s.) speed of oxygen molecules at 300 K is approximately 480 m/s. What will be its r.m.s. speed at 1200 K?						
	a) 960 m/s	b) 680 m/s	c) 240 m/s	d) 1200 m/s	a)			
71		batic expansion, a gas ngs. What is the chang			<mark>-150 J</mark>			
	a) +150 J	b) 0 J	c) -150 J	d) +300 J	c)			
72	Dirac dist	At absolute zero temperature (T = 0 K), what is the value of the Fermi- Dirac distribution function $f(E)$ for a state with energy E less than the Fermi energy E_F ?						
	a) 0	b) 0.5	c) 2	d) 1	<mark>d)</mark>			

73	The Jacobian of a ti	The Jacobian of a transformation from variables (x, y) to (u, v) is:					
	a) The cross product of u and v	b) The determinant of the matrix of partial derivatives	c) The product of all partial derivatives	d) The inverse of the determinant of the transformation matrix	b)		
74	A differential df is s	aid to be perfect if			<mark>The</mark> differential is exact		
	a) The mixed partial derivatives are not equal	b) df depends only on time	c) The differential is exact	d) f is a function of more than one variable	c)		
75	The Fourier series of	The Fourier series of an even function contains:					
	a) Only sine terms	b) Only cosine terms	c) Both sine and cosine terms	d) Exponential terms only	b)		

76	The divergence of	Scalar measure of source/sink strength				
	a) Circulation	b) Area under the curve	c) Scalar measure of source/sink strength	d) Direction of flow	<mark>c)</mark>	
77	 (R). Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below. Assertion (A): The Jacobian of a transformation being zero implies the transformation is not invertible. Reason (R): A zero Jacobian determinant indicates that the mapping 					
	collapses dimensio a) Both A and R are true, and R is the correct explanation of A.	b) Both A and R are true, but R is not the correct explanation of A	c) A is true but R is false	d) A is false but R is true	a)	
78	Each of these ques (R). Each of these of which is the correct and (d) given below Assertion (A): The	Both A and R are true, and R is the correct explanation of A				
	Reason (R): Gradiea)Both Aand R are true,and R is thecorrectexplanation of A	b) Both A and R are true, but R is not the correct explanation of A	c) A is true, but R is false	d) A is false, but R is true	a)	
79	Each of these ques (R). Each of these of which is the correct and (d) given below Assertion (A): The functions. Reason (R): Harmo	<mark>A is true, but</mark> R is false				
	zero. a) a) Both A and R are true,	b) Both A and R are true,	c) A is true, but R is false	d) A is false, but R is true	<mark>c)</mark>	

	and R is the	but R is not the			
	correct	correct			
	explanation of A	explanation of			
		A			
80	The complex numb	oer z=3+4i has a mo	odulus of:		<mark>5</mark>
	e) 5	f) 7	g) √7	h) $\sqrt{13}$	<mark>a)</mark>
81	The surface integra	al $\iint_{s} \vec{F}.\hat{n}dS$ using th	e divergence theo	rem for	3
	$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ o	over the surface of t	the unit cube 0≤x,	y, z≤10 is:	
	a) 0	b) 3	c) 1	d) 2	<mark>b)</mark>
82	For the matrix		·		2 and 3
	$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$, the eigenvalues of the ei	genvalues are:			
	a) 2 and 1	b) 1 and 3	c) 2 and 3	d) 3 and 0	<mark>c)</mark>
83	The locus represen	ited by $ z-3 + z+2$	3 =10 is		<mark>Ellipse</mark>
	e) circle	f) parabola	g) Ellipse	h) Hyperbola	<mark>c)</mark>
84	The value of the in unit square 0≤x,y≤	C	$y^2 dy$) where C is the set of	ne boundary of the	<mark>2/3</mark>
	b) 1/3	b) 1	c) 2/3	d) 0	<mark>c)</mark>
85	In a square matrix, will be	Symmetric			
	a) Symmetric	b) Skew	c) Hermitiaı	,	<mark>a)</mark>
		symmetric		Hermitian	
86	The Jacobian of the	e transformation x=	r cosθ, y=r sinθ is	:	<mark>r</mark>
	a) r	b) r ²	c) 1	d) 0	<mark>a)</mark>

87	Which of the follo constant during	Total Mechanical Energy				
	a) Speed	b) Displacen	nent	c) Kinetic Energy	d) Total Mechanical Energy	d)
88	Which of the follo	wing stateme	nts ar	e true ?		
	 A. Lissajous figures phase difference B. Lissajous figures the signals are C. The shape of a l phase difference 	C The shape of a Lissajous figure depends on the frequency ratio and phase difference between two				
	D. Lissajous figure	s do not chan	ge wi	th variations in signa	ll frequency.	<mark>signals.</mark>
89	a)A & B	b) A & D	•	c)D rect about the stater	d)C	<mark>d)</mark>
	A: In forced oscilla equals the natu B: At resonance, th destructive inte	<mark>A is true, but</mark> <mark>R is false.</mark>				
	a) Both A and R	b) Both A an	ld R	c) A is true, but R	d) A is false, but	
	are true, and R is the correct explanation of A.	are true, R is not th correct explanation of A.	he	is false.	R is true.	<mark>c)</mark>
90	Match the following	ng situations i	in the	columns given below	w:	
	A Underdamping B Critical damping C Overdamping		 I Oscillations die out very slowly over time IINo oscillations; system returns to equilibrium slowly III No oscillations; system returns 			<mark>A-I, B-III, C-II,</mark> D-IV
	D No damping (id	deal case)	IV Os	equilibrium fastest cillations continue w nstant amplitude	vith	
	a)A-I, B-II, C-III, D-IV	b)A-I, B-III, C D-IV		c)A-II, B-I, C-III, D- IV	d)A-IV, B-III, C-II, D-I	b)

91	A police car with a stationary observer hears	The siren's frequency appears higher than its actual frequency.				
	a) The siren's frequency appears lower than its actual frequency.	b) The sirer frequend appears unchang	су	 c) The siren's frequency appears higher than its actual frequency. 	d) The siren becomes completely inaudible.	<mark>c)</mark>
92		om air to ff a plane om water	in the columns given below: ILight bends away from normal to minimize time II The angle of incidence equals the angle of reflection IIILight bends toward the normal to minimize travel time IVLight travels in a straight line, since the medium is uniform		<mark>A-III, B-II, C-I,</mark> D-IV	
	a)A – I, B- II, C- III, D- IV	b)A-III, B-II, D-IV	C-I,	c)A-I, B-II, C-III, D- IV	d)A-IV, B- III, C-II, D-I	<mark>b)</mark>
93	An object is place	•		r of curvature of a c s correctly describes		The image is real, inverted, and diminished.
	a) The image is virtual, erect, and magnified.	b) The imag real, inve and diminish	erted,	 c) The image is real, inverted, and the same size as the object. 	d) The image is real, inverted, and magnified.	<mark>b)</mark>
94	Which of the follo A: Sound waves ca B: Only transverse perpendicular	<mark>A is false, but</mark> <mark>R is true.</mark>				
	a) Both A and R are true, and R is the correct	b) Both A a are true, R is not t correct	nd R , but	c) A is true, but R is false.	d) A is false, but R is true.	<mark>d)</mark>

	explanation of A.	explanation of A.			
95	Identify which of t A Polarization can B Unpolarized ligh wave propagati C A polarizing filte D Polarization of li	None of the statements are true			
	a) None of the statements are true	b) Only statements B and D are true	c) Only statement C is true	d) None of the statements are true All statements are true	a)
96	 Which of the follo A Constructive integration of the follo A Constructive integration of the formation of the formation of the following of the follo	C The principle of superposition states that when two light waves meet, their displacements add			
	a)B & C	b) C	c) D	d)B & D	b)
97	Which of the follo A: Diffraction is m B: The amount of wavelength of	Both A and R are true, and R is the correct explanation of A			
	a) Both A and R are true, and R is the correct explanation of A.	b) Both A and R are true, but R is not the correct explanation of A.	c) A is true, but R is false.	d) A is false, but R is true.	a).

98	Two simple harmo	Two simple harmonic motions (SHMs) along the same line are given by:						
	x1(t)=Acos(ωt), x2	$x1(t)=Acos(\omega t), x2(t)=Acos(\omega t+\phi).$						
	The resultant amp	litude of their supe	rposition is given by	:				
	a) 2Acos(φ/2)	b) Acos(φ)	c) 2Acos(ωt+φ/2)	d)2Acos(φ)	<mark>a)</mark>			
99	A car is moving to frequency of th speed of sound hear?	00 Hz. If the	<mark>1100 Hz</mark>					
	a) 1000 Hz	b) 1030 Hz	c) 1100 Hz	d) 1060 Hz	<mark>c)</mark>			
100	In the double-slit reduced, what	een the slits is	The fringe width increases.					
	a) The fringe width increases.	b) The fringe width decreases.	c) The interference pattern disappears.	d) The fringe width remains unchanged.	a)			