Test Booklet No. _____ This booklet consists of 100 questions and 16 printed pages.

RGUCET/2025/28

RGUCET 2025 Common Entrance Test, 2025 MASTER OF SCIENCE IN MATHEMATICS

Full Marks: 100							Time: 2 Hours
Roll No.							
Day and Date	of Examin	nation: _					
Signature of I	nvigilator((s)					
Signature of C	Candidate _						

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall before completion of Examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy

1	Arrange the follow P. in the Himalaya Q. during winter R. heavy snowfall S. especially above		Answer			
	a)R Q S P	b)Q R S P	c)R S Q P	d)R P Q S	(d)	
2	Choose the correct my homework."	et indirect form o	of the sentence: 'She	said, "I have finished	Answer	
	a)She said she finished her homework.	b)She said that she had finishe her homework.	d her homework.	d)She said that I had finished my homework.	(b)	
3	Choose the word	opposite in mea	ning to "mitigate":		Answer	
	a) Complicate	b) Worsen	c) Aggravate	d) Pacify	с	
4	Choose the correct option for the given statements A and R. Assertion (A): Modals are used to express necessity, ability, permission, or possibility. Reason (R): "Can", "may", and "must" are examples of determiners.					
	a) Both A and R are true, and R is the correct explanation of A	b) Both A and I are true, but R is not the correct explanation of A.		d) A is false but R is true.	(c)	
5	Type Questions here for matching pairs: A. Must i. Ability B. Can ii.Suggestion C. Should iii. Necessity D. May iv. Permission				Answer	
	a) A-III, B-I, C- II, D-IV	b) A-II, B-I, C- III, D-IV	c) A-I, B-II, C- IV, D-III	d) A-IV, B-III, C- II, D-I	(a)	
6	Choose the correct	t sentence using	a degree adverb:		Answer	
	a) She runs quite fast.	b) He should eats more.	c) They very enjoy music.	d) We must to leave now.	(a)	

7	Match the followi	ng pairs basec	l on sim	ilar meaning:			
	A. Assiduous		i. Sce	ent]	A-iii, B-iv,
	B. Redolence			lpable		-	
	C. Cologne			perose	-	C-i, D-ii	
	D. Apparent		iv. M			-	
			1			1	
	a) A-iii, B-iv, C-i, D-ii	b) A-iv, B-iii C-ii, D-i		A-i, B-iii, ii, D-iv	d) A-i, B-i C-iv, D-ii		a
8	The statements are: A: B. R. Gavai was appointed as the 52 nd Chief Justice of India (CJI).		JI).	Answer			
	B: Rishabh Pant r a) both A and B are true	b) only B is t	()	only A is true	d) None o	f these	с
9	Match the followi						
		al Science Da		i) 21 st June			
	B) National Mathematic		2	ii) 28 th Febr			Answer
	C) World Heritage Day			iii) 18 th Apri		<u> </u>	
	D) International Yoga Day			iv) 22 nd Dec	ember		
	a) A-iii, B-ii, C-	b) A-ii, B-iv,	C- c)	A-iv, B-iii, C-	d) A-ii, B-	-iii, C-iv.	
	iv, D-i	iii, D-i		D-i	D-i	, - · ,	b
10	Assertion (A): Th	e ICC men's (3 was won b	oy India.	
	Reason (R): India	defeated Eng	land in t	he final match.			Both A and R are false
	a) Both A and R	b) Both A an	d R c)	A is true, but	d) Both A	and Rare	
	are true, and R	are true, but	R R	is false	false		
	is the correct	is not the					d)
	explanation of	correct					u)
	Α	explanation of	of				
11	Match List I with	A List II and sel	ect the <i>i</i>	correct answer	l using the co	odes	
11	given below lists:				using the co		
	List -I Monumer		List -II	Builders			A-i, B-ii, C-
	A Ali Darwaja			laudid in Khalji			iv, D-iii
	B Buland Darwa	ia		kbar			, 2
	C Moti Masjid, A	U C	()	ırangzeb			
	D Moti Masjid, I	-		ah Jahan			
	a)A-i, B-ii, C- iii, D-iv	b) A-i, B-ii, (iv, D-iii	C- c)	A-i, B-ii, C- , D-iv	d) A-ii, B- D-iv	-i, C-iii,	(b)
12	In the 2025 India- bilateral trade?	EU Summit, v	which k	ey agreement w	vas signed to	o enhance	Answer

					(\mathbf{C}) \mathbf{I} 1'
		b)India-EU	c)India-EU Free	d)India-EU	C) India-
	a)India-EU	Digital	Trade	Strategic	EU Free
	Green Energy	Partnership	Agreement	Technology	Trade
	Pact	Agreement	(FTA)	Alliance	Agreement
		C	. ,		(FTA)
13		rnment has propos	ed "No Helmet, no	Fuel" policy to curb	Uttar Pradesh
	road accidents? a) Bihar	b) Jharkhand	c) Uttar Pradesh	d) Haryana	(c)
14	/			relationship between:	
14		mentalists and gui		letationship between.	\bigcirc
		b)	c)		(a)
15	,		e labelled as Assert	tion (A) and other	Both A & B
15	labelled as Jus		e labelleu as Assell	tion (A) and other	are true and
			lowers its freezing	noint	B is the
			ormation of ice cry		correct
		*	options given belo		justification
	choose the correct		options given belo	w.	of A
	a) Both A & B	b) Both A & B	c) A is true, but	d) Both A & B are	0171
	are not true	are true and	B is not true	true, but B is	
		B is the		not the correct	
		correct		justification of	(b)
		justification		A	
		of A			
16	Complete the ana	logy: Tree: Forest:	: Star : ?		Galaxy
	a) Sky	b) Night	c) Galaxy	d) Moon	с
17	Which of the follow	ving statements abo	ut Arunachal Prades	h is correct?	
	A. Arunachal Prade	sh shares its interna	tional borders with I	Bhutan, China, and	
	Nepal.				
		k in Arunachal Prade	sh is Mt. Kangto, wh	ich rises to over 7,000	B only
	meters.				
			ate in Northeast Indi	•	
		1	timeters of rainfall a		n
18	a) A and B	b) A,B and C	c) A only	d) B only	d)
18	Questions for ma	ching pairs: Mains	s-Number systems/	Algeora	
	A. Mean i)	Middle value of a	data set when arra	nged in	
		order		-	
	B. Median ii) Difference betwe	en highest and low	vest	D-i, A-ii, C-
		values	-		iii, B-iv
	C. Mode ii	i) The value that of	ccurs most frequen	tly	
) Average of all va			
					<u> </u>
	a) D-i, A-ii,C-	b) C-1, B-ii, A-	c) A-i, D-ii, B-	d) B-i, C-ii, D-iii,	a)
	iii, B-iv	iii, D-iv	iii, C-iv	A-iv	

19	Relate the stateme						
	Statements:						
		ctors are singers.			Only		
		singers are dancers	3.		conclusion I		
	Conclusions:		follows				
		tors are dancers.					
	II. No sing	ger is actor.					
		b) Only	c) Neither I no	or d) Both I and II			
	conclusion I	conclusion II		follow	(a)		
	follows	follows					
20		les indicate the reg	gular and period	ic rise and fall in the sea	Both A and		
	level.						
	Reason (R): Tides	s are caused by the	e gravitational p	oull of the moon and sea	R is the		
	level.	-			correct		
					explanation		
					of A		
	a) Both A and R	b) Both A and R	c) A is true but	R d) A is false but R is			
	true and R is the	true but R is not	is false	true			
	correct	the correct			a)		
	explanation of A	explanation of					
		А					
21	The differential ed	quation of circles	centered at orig	in (0, 0) is			
		_	-		Answer		
	a) $y \frac{dy}{dx} + x = b$	$r \frac{dy}{dy} + c y$	$\frac{dy}{dy} = x = 0$	d) $r \frac{dy}{dy} = y = 0$			
	a) $y \frac{dy}{dx} + x = b$ 0 y	$\int x \frac{dx}{dx} + \int c \int y \frac{dx}{dx}$	$\frac{1}{dx} - x = 0$	$\frac{d}{dx} = y = 0$	а		
	0 <i>y</i>	= 0					
22		1. 1.00	d^2	$\left(\frac{y}{2}\right)^3 - 3xy\left(\frac{dy}{dx}\right)^4 + y = 0$			
		ordinary different	tal equation $\left(\frac{1}{dx}\right)$	$\left(\frac{1}{2}\right) - 3xy\left(\frac{1}{dx}\right) + y =$	Answer		
	e^{4x} is						
	a) 1	b) 2	c) 3	d) 4	с		
23	Which of the follo	wing is true relate	ed to the ordinar	y differential equation			
	$d^2 y \int (dy)^4$	1 ^{5/3}		•	Answer		
	$\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^4\right]$?			Allswei		
	a) degree 4 and	b) degree 2	c) degree 3 and	_			
	order 2	and order	order 20.	order 2.	d		
		20/3.			u		
24	The orthogonal tra	Answer					
	a) $x^2 + \frac{y^2}{2} = c$	b) $\frac{x^2}{2} - y^2 =$	c^2 c) $xy = c^2$	$y = cx^{2} \text{ is}$ d) $x^{2} + y^{2} = cx$	а		
25	Which of the follo	owing statement(s)) are true about	the method of variation			
_	parameters in solv	ving ordinary diffe	rential equation	?			
			1				
	A. It can be used t	to solve linear non	-homogeneous	differential equations.	•		
			-	differential equation	Answer		
	C. It is used to fin						
	D. It cannot be us						
	equations.		e				
			inen nemegenee				

	a) A and C	b)A and B	c) B and C	d) only D	а	
26	The solution of the (e^{y})		ential equation - $e^y \sin x dy = 0$) is	Answer	
	a) $\sin y (e^x + 1) = c$	b) $\sin x (e^{y} + 1) = c$	c) $\cos x (e^{x})$ 1) = c	$ \begin{array}{c c} y + & d \\ cos x (e^{y} + \\ 1) = c \\ y)(ydx - xdy) = 0 \text{ is} \end{array} $	b	
27	Let $F(x, y)$ be the exact. Which of the				Answer	
	a) $1/x^2$	b)1/ <i>xy</i>	c) $1/(x^2 + y^2)$) d) x^2	d	
28	a) $1/x^2$ A first order ordin homogeneous if f				Answer	
	a) 0	b) 1	c)2	d) 3	а	
29	are homogeneous factor is given by	functions of x ar	nd y of same degr	= 0, where <i>M</i> and <i>N</i> eee, the integrating	Answer	
	a) $\frac{1}{My+Nx}$, $My - Nx \neq 0$	+ b) $\frac{1}{Mx + Ny}$, $Mx + Ny \neq 0$	c) $\frac{1}{Mx - Ny}$, $Mx - Ny \neq 0$	d) $e^{\int p(x)dx}$, where $p(x) = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)/N$	b	
30	What is the value $(xy^2 + \lambda x^2y)d$			ation	Answer	
		o) 2	c)3	d) -1	c	
31		$(+9)y = 2e^{-2x}, v$	where $D \equiv \frac{d}{dx}$, is		Answer	
	a) $y = (c_1 x + 1)$ $c_2 x^2) e^{-3x} + 2e^{-2x}$		c) $y = xe^{-3x} + 2e^{-2x}$	d) $y = (c_1 - c_2 x)e^{3x} + 2e^{-2x}$	b	
32	Which of the follo	owing complex fu	unction $f(z)$ is co	ontinuous at $z = 0$?	Answer	
	a) $f(z) =$ zReal(z)/ z and f(0) = 0	b) $f(z) =$ Real $(z)/ z $ and $f(0) =$ 1	c) $f(z) =$ $Real(z^2)/ z ^2$ and $f(0) = -1$	d) $f(z) = \overline{z}/z$ and $f(0) = 1/2$	a	
33	Match the curve I correction answer		f the integral \int_{Γ}	$\frac{dz}{1+z^2}$, and choose the		
	Correction answer: Eqn. of curve (Γ) Value of $\int_{\Gamma} \frac{dz}{1+z^2}$					
	A. Γ : $ z + i = 1$ B. Γ : $ z - i = 1$		i. 0 ii. π	*		
	C. $\Gamma: z = 3$		iii. –π			
	a) $A - ii, B - i, C - iii$	b) $A - iii, B - iii, C - i$	$\begin{array}{c} - & c) A - ii, B \\ iii, \\ & C - i \end{array}$	C — iii	b	

34	Which of the following functions is not analytic?		Answer
	a) $f(z) = z ^2 + 1$ b) $f(z) = \frac{z+1}{z+4}, \qquad c) f(z) = z^3 + 3i$	d) $(z) = iz^3 + 3i$	a
35	$\frac{z \neq -4}{ z + 1} = \frac{z \neq -4}{ z = 1, \text{ then th}}$ Let <i>C</i> be the positively oriented unit circle $ z = 1, \text{ then th}}{ \int_C \frac{e^{2z}}{z^4} dz \text{ is}}$	Answer	
	a) $\frac{\pi i}{2}$ b) $8\pi i/3$ c) $2\pi i$ d) $4\pi i$		b
36	Choose the correct answer. A: The function $f(z) = \sqrt{ xy }$ is not analytic at $(0, 0)$. B: $f(z) = \sqrt{ xy }$ satisfies Cauchy-Riemann equations at (0, 0).	Answer
	a) Both A and B are true. b) Both A and B are false. c) Only A is true. d) Only	B is true.	а
37	Match the power series with their domain of convergence, correct answer: i z+1+i > 2		
	$\begin{array}{ c c c c c } \hline A. \sum_{n} \left(\frac{1}{2+i} \right) \\ \hline B. \sum_{n} \left(\frac{2i}{z+1+i} \right)^{n} \\ \hline \end{array} \qquad \qquad$	only $z = 0$.	Answer
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	a) $A - iii$, $B - i$, C - ii, $D - iv$ b) $A - iv$, $B - i$, C - ii, $D - iii$ c) $A - ii$, $B - i$, C - iv, $D - iii$ c) $A - ii$, $B - i$, C - iv, $D - iii$	$ \begin{array}{c} d) A - ii, \\ B - iv, \\ C - ii, D \\ - iii \end{array} $	а
38	An entire function which is bounded in the whole complex	plane is	Answer
	a) meromorphic b) constant c) discontinue	bus d) not constant	b
39	Let <i>C</i> be the curve given by $z = 2e^{i\theta} \left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$. The integral $\int_C \overline{z} dz$ is	en the value of	Answer
	a) $\pi i/2$ b) πi c) $3\pi i$ d) $4\pi i$		d
40	Let <i>C</i> be the semi-circle of the $z = e^{i\theta}$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, in the Then the upper bound for $\left \int_{C} (x^{2} + iy^{2}) dz \right $ is	Answer	
	a) $-\pi$ b) $\pi/4$ c) $\pi/2$ d) π		d
41	Choose the correct statement:		Answer
	two dimensions hyperplane must cannot be both c) Every strictly onvex function hay be unique.	a
42	The set $S = \{(x, y) : xy \ge 1; x \ge 0, y \ge 0\}$ is		Answer

	a) Concave	b) Convex		c) not convex	d) none of these	b
43	Choose the corr			c) hot conven	a) none of these	0
	R^n is a convex s B. Let S be a clo extreme points in C. A simplex in (n-1) vertices	set. osed convex set v in every supportion n - dimensional s.	vhic ng h l is a	ns of a finite number h is bounded from b yperplane. h convex polyhedror f symbolic model.	below. Then S has	Answer
	a) C, D	b) A, B		c) A, C	d) A, B, C, D	b
44	Given an LPP to	/ .	-5 <i>y</i>		$1, 0.5 x + 5y \ge 0,$	Answer
	a) Unique optimum solution	b) multiple optimum solutions		c) unbounded solution	d) no feasible solution	d
45	Match the corre A. The set $S = 2y^2 \le 6$ is B. If a linear problem has a solution, then C. A constraint restricts D. A simplex in dimensions is	$= \{(x, y): 3x^2 + $ rogramming feasible t in an LPP	ii. iii	use of available reso convex . LPP has basic feas a triangle		Answer
	a) A-ii, B-iii, C-i, D-iv	b)A-iii, B-ii, C D-iv	C-i,	c)A-i, B-iii, C-ii, D-iv	d)A-ii, B-ii, C-iii, D-iv	a
46	When we solve	•		eous linear equation f decision variables		Answer
	a) positive	b) zero		c)positive and/or negative	d) negative	c
47		2x - 3y subject 0 and, $y \ge 0$. Che 0 = 1 s 17		the constraints $2x + \frac{1}{2}$ the correct stateme		Answer
	a) only A	b) only C		c) A and C	d) A and D	d)
48			tive	function coefficien	/	Answer

	a) + <i>M</i>	b) <i>–M</i>)+1	d) zero		b	
49		m of <i>m</i> simultan number of basic			n <i>n</i> unknowns		Answer	
	a) <i>m</i>	b) <i>n</i>		(n-m)	d) <i>n</i> + <i>m</i>		a	
50	The solution of the following LPP is: Maximize $z = 2x + 3y$, subject to the constraints: $x + y \le 30, x - y \ge 0, y \ge 3, 0 \le x \le 20$ and $0 \le y \le 12$.							
	a) <i>z</i> = 70	b) <i>z</i> = 72	c	z = 69	d) <i>z</i> = 73		b	
51	The least upp	er bound of the s	et $\{1/n, n\}$	$n \in \mathbb{N}$ } is			Answer	
	a) 1	b) 0		c) -1	d)does exist	t	(a)	
52		nce $(a_n) = \langle -1,$ espectively, are	$-2, -\frac{1}{3},$	$-3, -\frac{1}{5}, \rangle, 1$	imit inferior and	d limit	Answer	
	a) $-\infty$ and 0			c)0 and 0	d)−∞ar	nd ∞	(a)	
53	 Which of the following statements is/are true? A. A sequence converges to <i>l</i> if and only if every subsequence of it converges to <i>l</i>. B. Every sequence has a convergent subsequence. C. A monotonic sequence is always convergent. D. Every convergent sequence is Cauchy. 							
	a) A and D	b) A, B at	nd C	c)A only	d)D onl	y	d)	
54	A: (a_n) conv	sequence (a_n) , we erges to $2/3$.		$=\frac{2n-7}{3n+2}$. Then		•	Answer	
	a) A is true bu is false.	tt B b) Both A	and B e and B cation	c) Both A ar are true b is not a justificat for A.	out B B ar	A and e false.	(c)	
55		lowing sequence	s with the	e correct optic				
	$\frac{A\left(\frac{(-1)^n}{n}\right)}{B(1+(-1))}$ $\frac{B(1+(-1))}{C((-1)^n n)}$ $D(-(e)^n)$	<i>n</i>)	II Co III D	cillates finitely onverges. viverges to	0		Answer	
	a) A-I,B-III,C II,D-IV	IV,D-I	II	c) A-II,B-IV III,D-I		',B- 2-I,D-II	(b)	
56	The given ser	$\operatorname{ies}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p},$	p > 0 is				Answer	
	a) absolutely convergen p < 1	t if $p > 1$ b)condition	rgent if	c) divergent	conv	utely vergent $0 > 1$	(d)	

57	Let (u_n) be a seque	ence such that $\lim_{n \to \infty} \frac{u}{n}$	$\frac{n+1}{u_n} = l$. Then		Answer	
	a) $\lim_{n \to \infty} u_n = 0$ if $ l < 1$	b) $\lim_{n \to \infty} u_n = 1$ if $ l > 0$		d) $\lim_{n \to \infty} u_n =$ 0 if $ l > 1$	(a)	
58	A. Continuity is no finite derivativeB. Bounded sequer	l > 0 wing statements is/an eccessary and sufficit. neces are always conv at a point c, then $ f $ is	ent condition for th rergent.		Answer	
	a)A, B and C	b) A and C	c)A and B	d) C only	(d)	
59	Consider the series A: $\sum u_n$ converges B: $\sum v_n$ converges.	$\sum u_n = \sum_{n=1}^{\infty} \frac{1}{n^n}$ and $\sum u_n = \sum_{n=1}^{\infty} \frac{1}{n^n}$	$\sum v_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$. The	en	Answer	
	a) A is false but B is true	b) Both A and B are false.	c) Both A and B are true and B is a justification for A.	d) Both A and B are true but B is not a justification for A.	(c)	
60	Type Questions here A.Value of $\frac{d^n}{dx^n}$ (ax B.Value of $\frac{d}{dx}$ (log C.Differential co f (log x), wh log x, is D.If $y = x^{n-1}$ $x \frac{d^n y}{dx^n} =$	pefficient of ere $f(x) =$ iii. 1	$(\log x)^{-1}$ (x - 1)! (x - 1)		Answer	
	a)A-IV,B-I,C- III,D-II	b) A-IV,B-I,C- II,D-III	c)A-II,B-I,C- III,D-IV	d)A-IV,B- III,C-I,D-II	(d)	
61	Let $f: \mathbb{R} \to \mathbb{R}$ be a c	constant function. Th	ten image of $\mathbb R$ unde	f is	Answer	
	a) open	b)infinite	c) empty	d)not open	(d)	
62	Which of the following is a decreasing sequence? Image: Comparison of the following is a decreasing sequence?					

63	A. The subset of B. Interior of an C. Derived set of	Which of the following statements is/are true?A. The subset of an open set is always open.B. Interior of any set is closed.C. Derived set of the set of all rationals is the set of rational numbers.D. A finite set is not dense in itself.					
	a) B, C and D	b) C only	c) D only	d) B only	c)		
64	A: $S = [1,2] \cup (3)$	tements and choose t 3,4) \cup {5} is not an c tit points of S is [1,2]	-		Answer		
	a) A is true but B is false.	b) Both A and B are true and I is the justification for A.	are true but B is not a	d) Both A and B are false.	(b)		
65	Which of the fol	lowing function does	s not satisfies Rolle's	theorem?	Answer		
	a) $\sqrt{4 - x^2}$ in [-2,2.]	b) $ x - 2 $ in [1,3]	$\begin{array}{c} c \\ c$	d) $x(x-3)^2$ on [0,3]	(b)		
66	If $\int f(x) dx = g$	Answer					
		b)g(x) - h(x) = constant	c)h(x)g(x) = constant	$\mathbf{d})h(x) = g(x)$	b		
67		itive integer, then on	e of the values $\int x^n $	dx is equal to			

67	If <i>n</i> is an odd po	sitive integer, then or	the values $\int x^n $	dx is equal to	Answer		
	a) $\left \frac{x^{n+1}}{n+1}\right $	b) $\frac{x^{n+1}}{n+1}$	$c)\frac{ x^n x}{n+1}$	d) None of these	с		
68	The value of the integral $\int e^x [f(x) + f'(x)] dx$ is						
	a) $e^x f(x) + c$	$(b) - e^x f(x) + c$	c) $e^x + f(x) + c$	d) None of these	а		
69	If $\int g(x) dx = f$	$f(x)$, then $\int f(x)g(x)$	dx is equal to	·	Answer		
	a)log $ f(x) + c$	b) $\frac{1}{2}[g(x)]^2 + c$	$c)\frac{1}{2}[f(x)]^2 + c$	d) None of these	с		
70	If $I_n = \int_0^{\pi/4} \tan^2 t$	n x dx, then the valu	e of $I_{n+1} - I_{n-1}$ is		Answer		
	a) $-\frac{1}{n}$	b) $\frac{1}{n}$	$c)\frac{2}{n}$	d) $-\frac{2}{n}$	b		
71	$\int_0^a f(x) dx$ is equal to						
	a) $\int_0^a f(-x) dx$	b) $\int_0^a f(a-x) dx$	$c)\int_0^a f(a+x) dx$	$ \begin{array}{c} \mathrm{d} \int_{0}^{a} f(2a - x) dx \end{array} $	b		
72	Evaluate $\int_0^1 \frac{\tan^{-1}}{1+x}$	$\int_{2}^{1} \frac{x}{2} dx$			Answer		

a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{\pi r^2}{4}$ d) $16\pi r^2$ d74The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent toAnswa) $2 \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} f(\sin x) dx$ c) $2 \int_0^{\pi/2} f(\cos x) dx d \int_0^{\pi/2} f(\cos x) dx$ 75The area bounded by the curve $y = \varphi(x)$, the x -axis and the lines $x = a$ Answa) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ c) $2 \int_a^b \int_0^{\varphi(x)} dx dy$ d)76To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy =$ b) $dx dy =$ c) $dx dy =$ d)77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa)0b)1c) $\frac{1}{3}$ d)78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc}$ d)79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a) \frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ c80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ								
a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{\pi r^2}{4}$ d) $16\pi r^2$ d74The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent toAnswa) $2 \int_0^{\pi/2} f(\sin x) \left\{ \int_0^{\pi/2} f(\sin x) dx \right\}$ c) $2 \int_0^{\pi/2} f(\cos x) dx \right $ Answa) $2 \int_0^{\pi/2} f(\sin x) \left\{ \int_0^{\pi/2} f(\sin x) dx \right\}$ c) $2 \int_0^{\pi/2} f(\cos x) dx \right $ a75The area bounded by the curve $y = \varphi(x)$, the x -axis and the lines $x = a$ Answa) $x = b(a < b)$ is given byc) $2 \int_a^b \int_0^{\varphi(x)} dx dy $ d)a) $\int_a^b \int_0^{\varphi(x)} y dx dy $ $\int_a^b \int_0^{\varphi(x)} dx dy $ c) $2 \int_a^b \int_0^{\varphi(x)} dx dy $ d)76To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy = r dr d\theta$ c) $dx dy = d\theta dr dx dy = b$ 77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa)0b)1c) $\frac{1}{3}$ a)0b)1c) $\frac{1}{3}$ d)78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa)4\pi abcb) $\frac{4}{3} \pi abc$ c) $\frac{8}{3} \pi abc}$ d)79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnswa) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ d) $\frac{6^4}{3}a^2$ c80Evaluate $\int f(x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ	4					d) $\frac{\pi}{32}$	2 2 2	d
74The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent toAnswa) $2 \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} f(\sin x) dx$ c) $2 \int_0^{\pi/2} f(\cos x) dx \int_0^{\pi/2} f(\cos x) dx$ a75The area bounded by the curve $y = \varphi(x)$, the x -axis and the lines $x = a$ and $x = b(a < b)$ is given byAnswa) $\int_a^b \int_0^{\phi(x)} y dx dy$ b) $\int_a^b \int_0^{\phi(x)} dx dy$ c) $2 \int_a^b \int_0^{\phi(x)} dx dy$ d) 0 76To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy = b$ $r dr d\theta$ b) $r dr d\theta$ $dy d d dr$ 77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa)0b)1c) $\frac{1}{3}$ 78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc}$ 79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)_1^{\frac{1}{3}}a^2$ $b)_3^{\frac{4}{3}}a^2$ $c)_1^{\frac{16}{3}}a^2$ $d)_0^{\frac{64}{3}}a^2$ 78Evaluate $\int f(x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ	The area of the circle $x^2 + y^2 = 16r^2$ is						Answer	
a)b)c)c)d)a) $2\int_{0}^{\pi/2} f(\sin x) \left\{ \int_{0}^{\pi/2} f(\sin x) dx \right\}^{2} \left\{ \int_{0}^{\pi/2} f(\cos x) dx \right\}^{2} \left\{ \int_{0}^{\pi/2} f(\cos x) dx \right\}^{2} dx $ a)a)75The area bounded by the curve $y = \varphi(x)$, the x -axis and the lines $x = a$ Answa) $\int_{a}^{b} \int_{0}^{\varphi(x)} y dx dy $ b) $\int_{a}^{b} \int_{0}^{\varphi(x)} dx dy $ c) $2\int_{a}^{b} \int_{0}^{\varphi(x)} dx dy $ d)076To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy = b$ b) $dx dy = c$ c) $dx dy = d$ d) $dx dy = b$ 77The double integral $\int_{0}^{1} \int_{0}^{1} (x^{2} + y^{2}) dx dy$ is equal toAnswa)0b)1c) $\frac{1}{3}$ d) $\frac{2}{3}$ d78The volume of the ellipsoid $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$, isAnswAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc}$ d)8\pi abcb79The area between the parabolas $y^{2} = 4ax$ and $x^{2} = 4ay$ isAnswAnswAnsw $a)_{3}^{1}a^{2}$ $b)_{3}^{4}a^{2}$ $c)_{3}^{16}a^{2}$ $d)_{0}^{64}a^{2}$ c80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.AnswAnsw	a) πr^2	b) $\frac{\pi r}{16}$	2	$c)^{\frac{\pi}{2}}$	$\frac{\tau r^2}{4}$	d)16	$5\pi r^2$	d
$\frac{2 \int_{0}^{\pi/2} f(\sin x) d \int_{0}^{\pi/2} f(\sin x) dx}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\sin x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\sin x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\sin x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} \int_{0}^{\pi/2} f(\cos x) dx} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} dy} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} dy} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) dx} dy} d a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) d x} dy} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) d x} dy} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(\cos x) d x} dy} a$ $\frac{2 \int_{0}^{\pi/2} f(\cos x) d x}{2 \int_{0}^{\pi/2} f(x d y)} d d d x} d y$ $\frac{1}{9} a$ $\frac{1}{9} \int_{0}^{0} f(x) d x} d y = b$ $\frac{1}{9} \int_{0}^{0} f(x) d x} d y d y = c$ $\frac{1}{9} \int_{0}^{0} f(x) d x} d y d d y d d d d d d d d d d d d d d $	The integral $\int_0^{\pi} f$	f(sin:	x) dx is equiva	lent	to			Answer
and $x = b(a < b)$ is given byAnswa) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ c) $2 \int_a^b \int_0^{\varphi(x)} dx dy$ d) 076To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy =$ $dr d\theta$ b) $dx dy =$ $r dr d\theta$ c) $dx dy =$ $r^2 dr d\theta$ d) $r dx dy =$ θdr b)77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa) 0b) 1c) $\frac{1}{3}$ d) $\frac{2}{3}$ d78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnswa) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ d) $\frac{64}{3}a^2$ c80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ		b) $\int_0^{\pi/2}$	$f(\sin x) dx$	c) 2 J	$\int_0^{\pi/2} f(\cos x) dx$		$f(\cos x) dx$	а
76To change a given double integral from cartesian to polar coordinates; we use the formulaAnswa) $dx dy =$ $dr d\theta$ b) $dx dy =$ $r dr d\theta$ c) $dx dy =$ 	and $x = b(a < b)$	b) is g	given by					Answer
the formulaAnswa) $dx dy = dr d\theta$ b) $dx dy = c$ c) $dx dy = dr dx dy = dr dx dy = dr d\theta$ d) $r dx dy = b$ b77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa) 0b) 1c) $\frac{1}{3}$ d) $\frac{2}{3}$ d78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ c80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ	a) $\int_a^b \int_0^{\varphi(x)} y dx$	x dy	b) $\int_{a}^{b} \int_{0}^{\varphi(x)} dx dx$	y	c) $2\int_a^b \int_0^{\varphi(x)} dx$	x dy	d) 0	b
77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa) 0b) 1c) $\frac{1}{3}$ d) $\frac{2}{3}$ d78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ 80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ			-		-	oordii	nates; we use	Answer
77The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal toAnswa) 0b) 1c) $\frac{1}{3}$ d) $\frac{2}{3}$ d78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ 80Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.Answ	/		b) $dx dy = r dr d\theta$		c) $dx dy =$ $r^2 dr d\theta$		2	b
78The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, isAnswa) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ c80Evaluate $\int \int (x+y) dx dy$ over a region bounded by curves $xy = 6$ and $x+y=7$.Answ	The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal to						Answer	
a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ b79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ c80Evaluate $\int \int (x+y) dx dy$ over a region bounded by curves $xy = 6$ and $x+y=7$.Answ	, ,		,		5	d)	$\frac{2}{3}$	d
79The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ isAnsw $a)\frac{1}{3}a^2$ $b)\frac{4}{3}a^2$ $c)\frac{16}{3}a^2$ $d)\frac{64}{3}a^2$ c 80Evaluate $\int \int (x+y) dx dy$ over a region bounded by curves $xy = 6$ and $x+y=7$.Answ	The volume of the terms of terms	ne elli	u b	C				Answer
a) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ d) $\frac{64}{3}a^2$ c80Evaluate $\int \int (x+y) dx dy$ over a region bounded by curves $xy = 6$ and $x+y = 7$.Answ	a) 4 <i>πabc</i>		b) $\frac{4}{3}\pi abc$		c) $\frac{8}{3}\pi abc$	d)	8πabc	b
80 Evaluate $\int \int (x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$. Answ	The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is						Answer	
x + y = 7. Answ	a) $\frac{1}{3}a^2$		b) $\frac{4}{3}a^2$		c) $\frac{16}{3}a^2$	d)	$\frac{54}{3}a^2$	с
$a)^{\frac{5}{2}}$ $b)^{\frac{25}{2}}$ $c)^{\frac{125}{2}}$ $d)^{\frac{625}{2}}$							Answer	
	a) $\frac{5}{3}$		b) $\frac{25}{3}$		c) $\frac{125}{3}$		$d)\frac{625}{3}$	с
		The area of the c a) πr^2 The integral $\int_0^{\pi} f$ a) $2 \int_0^{\pi/2} f(\sin x) dx$ The area bounded and $x = b(a < i)$ a) $\int_a^b \int_0^{\varphi(x)} y dx$ To change a give the formula a) $dx dy = dr d\theta$ The double integration a) 0 The volume of the a) $4\pi abc$ The area betwees a) $\frac{1}{3}a^2$ Evaluate $\int \int (x - x + y) dx$	The area of the circle x a) πr^2 b) $\frac{\pi r}{16}$ The integral $\int_0^{\pi} f(\sin x)$ a) $2 \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} f(\sin x) d$	The area of the circle $x^2 + y^2 = 16r$ a) πr^2 b) $\frac{\pi r^2}{16}$ The integral $\int_0^{\pi} f(\sin x) dx$ is equival a) $2 \int_0^{\pi/2} f(\sin x) d \int_0^{\pi/2} f(\sin x) dx$ The area bounded by the curve $y = q$ and $x = b(a < b)$ is given by a) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ To change a given double integral from the formula a) $dx dy =$ b) $dx dy =$ $dr d\theta$ The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx$ a) 0 b) 1 The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{1}{a^2}$ a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ The area between the parabolas $y^2 =$ a) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ Evaluate $\int \int (x + y) dx dy$ over a reg x + y = 7.	The area of the circle $x^2 + y^2 = 16r^2$ is a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{1}{2}$ The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent a) $2 \int_0^{\pi/2} f(\sin x) \left(\int_0^{\pi/2} f(\sin x) dx \right) 2 \right)$ The area bounded by the curve $y = \varphi(x)$ and $x = b(a < b)$ is given by a) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ To change a given double integral from cather formula a) $dx dy =$ b) $dx dy =$ $r dr d\theta$ r $dr d\theta$ The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dx$ a) 0 b) 1 The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$ a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ The area between the parabolas $y^2 = 4ax$ $a)\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ Evaluate $\int \int (x + y) dx dy$ over a region $x + y = 7$.	The area of the circle $x^2 + y^2 = 16r^2$ is a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{\pi r^2}{4}$ The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent to a) $2\int_0^{\pi/2} f(\sin x) d\int_0^{\pi/2} f(\sin x) dx$ 2 $\int_0^{\pi/2} f(\cos x) dx$ The area bounded by the curve $y = \varphi(x)$, the x -axis and and $x = b(a < b)$ is given by a) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ c) $2\int_a^b \int_0^{\varphi(x)} dx$ To change a given double integral from cartesian to polar con- the formula a) $dx dy =$ b) $dx dy =$ c) $dx dy =$ $r^2 dr d\theta$ The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal to a) 0 b) 1 c) $\frac{1}{3}$ The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, is a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $a) \frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ Evaluate $\int \int (x + y) dx dy$ over a region bounded by curve x + y = 7.	The area of the circle $x^2 + y^2 = 16r^2$ is a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{\pi r^2}{4}$ d)16 The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent to a) a) $\int_0^{\pi/2} f(\sin x) dx \int_0^{\pi/2} f(\sin x) dx \int_0^{\pi/2} f(\cos x) dx \int_0^{\pi/2} f(\cos x) dx \int_0^{\pi/2} f(\cos x) dx \int_0^{\pi/2} f(\sin x) dx dy$ The area bounded by the curve $y = \varphi(x)$, the x -axis and the f and $x = b(a < b)$ is given by a) $\int_a^b \int_0^{\varphi(x)} y dx dy \int_a^b \int_0^{\varphi(x)} dx dy$ To change a given double integral from cartesian to polar coordin the formula a) $dx dy =$ b) $dx dy =$ c) $dx dy =$ d) $dr d\theta$ $r dr d\theta$ $r^2 dr d\theta$ $d\theta$ The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal to a) 0 b) 1 c) $\frac{1}{3}$ d) The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, is a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is a) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ d) Evaluate $\int f(x + y) dx dy$ over a region bounded by curves xy x + y = 7.	The area of the circle $x^2 + y^2 = 16r^2$ is a) πr^2 b) $\frac{\pi r^2}{16}$ c) $\frac{\pi r^2}{4}$ d) $16\pi r^2$ The integral $\int_0^{\pi} f(\sin x) dx$ is equivalent to a) $2 \int_0^{\pi/2} f(\sin x) \int_0^{\pi/2} f(\sin x) dx$ $2 \int_0^{\pi/2} f(\cos x) dx \int_0^{\pi/2} f(\cos x) dx$ The area bounded by the curve $y = \varphi(x)$, the x -axis and the lines $x = a$ and $x = b(a < b)$ is given by a) $\int_a^b \int_0^{\varphi(x)} y dx dy$ b) $\int_a^b \int_0^{\varphi(x)} dx dy$ c) $2 \int_a^b \int_0^{\varphi(x)} dx dy$ d) 0 To change a given double integral from cartesian to polar coordinates; we use the formula a) $dx dy =$ b) $dx dy =$ c) $dx dy =$ d) $r dx dy =$ $dr d\theta$ $r dr d\theta$ $r^2 dr d\theta$ $d\theta dr$ The double integral $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ is equal to a) 0 b) 1 c) $\frac{1}{3}$ d) $\frac{2}{3}$ The volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, is a) $4\pi abc$ b) $\frac{4}{3}\pi abc$ c) $\frac{8}{3}\pi abc$ d) $8\pi abc$ The area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is a) $\frac{1}{3}a^2$ b) $\frac{4}{3}a^2$ c) $\frac{16}{3}a^2$ d) $\frac{64}{3}a^2$ Evaluate $\int f(x + y) dx dy$ over a region bounded by curves $xy = 6$ and $x + y = 7$.

81	Given below are two statements: One is labelled as Assertion (A) and the other				
	is labelled as Reason/Justification (R).				
	Assertion(A):Let R be a commutative ring with unity and F be a field. If $f: R \rightarrow f$				
	F be an epimorphism, then Ker(f) is both prime and maximal ideal of R .				
	Justification (R): If $f: R \to F$ be a homomorphism of rings, then				
	(i) $Ker(f)$ is prime ideal if F is an integral domain,				
	(ii) (ii) $Ker(f)$ is maximal ideal if f is surjective and F is a field.				
	In the light of the above statements choose the correct answer from the options				
	given below:				

	a) A is false but R is true	b) Both A and R are false	c) A is true but R is false	d) Both A and R are true and R is the correct reasoning of A.	d
82	followings is true A. f is always B. f is always C. f is always	s one-one. s onto.	group homomorph	ism. Then which of the	Answer
	a)Only A	b)Only B	c) A and B	d)A, B and C	d
83	The set of all alge	braic numbers form	l		Answer
	a) Commutative ring	b)A field	c)A non- commutative ring	d)An integral domain	b
84	All possible units	in the ring Z_8 of all	integers modulo 8	is/are	Answer
	a)1,3,5,7	b)3,5,7	c)1,2	d)1,3,11	а
85	In the symmetric g of $\alpha\beta\alpha^{-1}$ is	group S_5 if $\alpha = (123)$	$\beta^{3}(45)$ and $\beta = (2)$	(3)(14), then the value	Answer
	(a) (13)(245)	(b)(13)(25)(4)	(c)(12)(345)	(d)(12)(45)(3)	b
86	(A) Every grou (B) Every grou (C) Every grou	wing(s) is/are true? p of order 51 is cyclip of order 151 is cyclip p of order 151 is cyclip of order 505 is cyclip of order 15 is	clic. yclic yclic.	I	Answer
	a) A and C	b) Only C	c) A, B and D	d) A, B and C	с
87	$i = \sqrt{-1}$, G is ad fourth roots of unit	ditive group of int ty, then which of th 1: $k \in Z$ } : Z}		$b = i^n \forall x \in G$, where, nultiplicative group of Xer(f)?	Answer
	a) Only A	b) Only C	c) Only B	d) Only D	b
88	The set of integer	modulo 7 is a	1	1	Answer
	a) Non- commutative ring without unity	b) Commutative ring without unity	c) Commutative ring with unity	d) Non-commutative ring with unity	с

89	Let V be the vector space of all real polynomials of degree at most 3. Define the linear transformation $T: V \to V$ by $Tp(x) = \frac{d}{dx}(p(x))$, then the matrix of T w.r.t the basis $\{1, x, x^2, x^3\}$ is given by					
	$ \begin{pmatrix} (a) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} b \\ 1 & 1 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix} $	$\begin{pmatrix} (c) & & & \\ & 0 & 1 & 0 & 1 \\ & 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 \\ & 0 & 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} (d) \\ \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} $	a	
90	implication(s) is/a A. $Det(A) =$ B. $Det(A) =$ C. $rank(A) =$		() = 0 $() \neq 1$ $() \neq 0$	Which of the following	Answer	
	a) Only A	b) Only B	c) A,B and C	d) A and D	b	
91				a linear map such that ely, then $N(T) + R(T)$	Answer	
	(a) 2026	(b) 2025×2026	(c) 2025	(d) 4051	с	
92	The system of equ	ations $x - y + 3z =$	= 0, x + z = 0, x + z	y - z = 0 has	Answer	
	a) a unique solution	b) exactly two solutions	c) infinitely many solutions	d) no solution	с	
93	Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason/Justification (R). Assertion (A): The vectors (1,0,1), (1,1,0) and (a,b,c) in \mathbb{R}^3 are linearly dependent iff $a = b + c$. Justification (B):Three vectors $(u, v, w), (p, q, r)$ and (l, m, n) are linearly dependent iff $\begin{vmatrix} u & v & w \\ p & q & r \\ l & m & n \end{vmatrix} \neq 0$ In the light of the above statements choose the correct answer from the options given below:					
	a) A is true but R is false	b) A is false and R is true	c) Both A and R are true and R is the correct explanation for A	d) Both A and R are true but R is not the correct explanation for A	a	
94		which of the follow 2 0 -2		, a, b) in R ³ are linearly	Answer	

	a) Only A	b) Only C	c) Only B	d) Only D	b
95*	then which of the (A) {(1,1,0,0), (B) {(-1,1,0,0), (C) {(-1,1,0,1)	following is the bas (0,0,1,1)}	sis of the solution sp	$a + b = 0, c = 2d$ }, pace of <i>W</i> ?	Answer
	a) Only A	b) Only C	c) Only B	d) Only D	b

95*	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z$ correct code	\hat{k} and $r = \vec{r} $, then m	atch the followin	g columns with	
	Agrad(r)		i.3			
	B. grad(r^n)					Answer
			ii. $\frac{\vec{r}}{ r }$			
	C. div (\vec{r})		iii. 0			
	Dcurl(\vec{r})		iv. nr ⁿ	$r^{-2}.\vec{r}$		
	a) (A)-(ii), (B)-(iv)				d)(A)-iv), (B)	
	(C)-(i), (D)-(iii)	(B)-(i),			(i), (C)-(iii), (D))- a
06	The directional der	(ii), (D)	$\frac{-(111)}{4 - 2x - x}$	(D)-(iii)	(iv)	
96	direction towards t	rivative of $\phi =$	4e ²	¹² , at the point ()	(1,1,-1) in the	A
		ine point (-5,5,	0)			Answer
	a) $\frac{-2}{9}$	b) $\frac{10}{9}$		c) $\frac{20}{9}$	d) $-\frac{20}{9}$	d
97	Choose the False s		ments:	9	,	
	 A. If <i>F</i> is conservative force field, then it can be expressed as the gradient of some scalar function φ B. If <i>F</i> is conservative, then <i>F</i> is not necessarily irrotational. C. The divergence of the curl of any vector field is always zero. D. The vector field <i>F</i>=∇×<i>A</i> where <i>A</i> is any vector field, is always solenoidal. 					Answer
	a)A and B	b)Only		c) A and C	d) only D	b
98	 Identify which of the following statement/statements are true: A. The surface integral of a vector field gives the total flux across the surface. B. A surface integral always results in a scalar quantity. C. Volume integrals can be used to calculate total mass when density is given as a function of position. D. A volume integral of a vector field always gives a vector. 					Answer
	a)Only A b)Both A and C c)A,C and D d)C and D					b
99	According to Stoke's theorem, if S is an open surface bounded by a simple closed curve C and \vec{F} is continuous having continuous partial derivatives in S and C and \hat{n} is the outward unit normal vector and C is traversed in anti- clockwise direction, then					n S Answer
	a) $\int_{c} \vec{F} \cdot \vec{dr} =$ $\iint_{S} grad \vec{F} \cdot \hat{n} ds$	b) $\int_{c} \vec{F} \cdot \vec{dr} = \iint_{S} curlgrad$	<i>Ē.</i> îds	c) $\int_{c} \vec{F} \cdot \vec{dr} =$ $\iiint_{S} div \vec{F} \cdot \hat{n} ds$	d) $\int_{c} \vec{F} \cdot \vec{dr} =$ $\iint_{S} curl \vec{F} \cdot \hat{n} d$	d d

100	Identify which of the foll A. The gradient of a scal B. The divergence of a v C. The curl of a vector fi D. If $div \vec{F} = 0, \vec{F}$ must	ar field is a vecto ector field is alwa eld is a scalar fiel	r field. tys a vector quant		Answer
	a)Only A	b) Both B and D	c) A,C and D	d) Only D	а

* Q 95 twice : Forwarded for Grievance Committee Decision